Loading…
Mode I traction-separation measured using rigid double cantilever beam applied to structural adhesive
Adhesive joining facilitates the development of multi-material vehicle structures; however, widespread adoption requires material properties to characterize adhesive joints for implementation in finite element (FE) models. Specifically, modeling adhesive joints using the cohesive zone method require...
Saved in:
Published in: | The Journal of adhesion 2020-06, Vol.96 (8), p.717-737 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adhesive joining facilitates the development of multi-material vehicle structures; however, widespread adoption requires material properties to characterize adhesive joints for implementation in finite element (FE) models. Specifically, modeling adhesive joints using the cohesive zone method requires measuring the Mode I traction-separation response, which currently requires multiple tests. To address this need, a new method to determine the Mode I response was developed using the Rigid Double Cantilever Beam (RDCB) test, where the steel adherend geometry was designed to ensure high stiffness compared to structural epoxy adhesives. The samples were tested in tension with displacements measured from high-resolution imaging of the test. A new analysis method was developed with resulting Mode I traction-separation response within the expected range for this structural adhesive. The analysis was verified using a FE model of the test and compared to Tapered Double Cantilever Beam test data. Importantly, the predicted force-displacement response from the FE model, using the measured traction-separation curve, compared well to the measured force-displacement data. The proposed RDCB test demonstrated the ability to determine the Mode I response of a toughened structural adhesive using a single test, the results of which can then be readily implemented into FE simulations. |
---|---|
ISSN: | 0021-8464 1545-5823 |
DOI: | 10.1080/00218464.2018.1502666 |