Loading…
Secretome characterization of the lignocellulose-degrading fungi Pycnoporus sanguineus and Ganoderma resinaceum growing on Panicum prionitis biomass
C4 grasses are common species in rangelands around the world and represent an attractive option for second-generation biofuel production. Although they display high polysaccharide content and reach great levels of biomass accumulation, there is a major technical issue to be addressed before they can...
Saved in:
Published in: | Mycologia 2021-09, Vol.113 (5), p.877-890 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | C4 grasses are common species in rangelands around the world and represent an attractive option for second-generation biofuel production. Although they display high polysaccharide content and reach great levels of biomass accumulation, there is a major technical issue to be addressed before they can be used for bioethanol industrial production: lignin removal. Concerning this, Pycnoporus and Ganoderma fungal genera have been highlighted due to their ability to hydrolyze lignocellulose in biological pretreatments. Our goals here were to evaluate the pretreatment efficiency using the secretome of species from Pycnoporus and Ganoderma spp. harvested from a glucose-free inductive medium (using a C4 grass) and to identify the fungal enzymatic activities responsible for the lignin degradation and glucose release. Our results show that P. sanguineus secretome exhibits a higher activity of lignocellulolytic enzymes such as cellulases, xylanases, laccases, and manganese peroxidases compared with that from G. resinaceum. Interestingly, zymograms in the presence of 2 M glucose suggest that a β-glucosidase isoform from P. sanguineus could be glucose tolerant. The proteomic approach carried out allowed the identification of 73 and 180 different proteins in G. resinaceum and P. sanguineus secretomes, respectively, which were functionally classified in five main categories and a miscellaneous group. These results open new avenues for future experimental work that lead to a deeper comprehension and a greater application of the mechanisms underlying lignocellulosic biomass degradation. |
---|---|
ISSN: | 0027-5514 1557-2536 |
DOI: | 10.1080/00275514.2021.1922249 |