Loading…
Classification of three-dimensional zeropotent algebras over the real number field
A nonassociative algebra is defined to be zeropotent if the square of any element is zero. In this paper, we give a complete classification of three-dimensional zeropotent algebras over the real number field up to isomorphism. By restricting the result to the subclass of Lie algebras, we can obtain...
Saved in:
Published in: | Communications in algebra 2018-11, Vol.46 (11), p.4663-4681 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A nonassociative algebra is defined to be zeropotent if the square of any element is zero. In this paper, we give a complete classification of three-dimensional zeropotent algebras over the real number field up to isomorphism. By restricting the result to the subclass of Lie algebras, we can obtain a classification of three-dimensional real Lie algebras, which is in accordance with the Bianchi classification. Moreover, three-dimensional zeropotent algebras over a real closed field are classified in the same manner as those over the real number field. |
---|---|
ISSN: | 0092-7872 1532-4125 |
DOI: | 10.1080/00927872.2018.1448852 |