Loading…
Tilting modules for the Auslander algebra of K[x]/(x n )
We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules.
Saved in:
Published in: | Communications in algebra 2022-01, Vol.50 (1), p.82-95 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03 |
container_end_page | 95 |
container_issue | 1 |
container_start_page | 82 |
container_title | Communications in algebra |
container_volume | 50 |
creator | Geuenich, Jan |
description | We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of
and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules. |
doi_str_mv | 10.1080/00927872.2021.1951748 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00927872_2021_1951748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622674479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKuPIATc6GLa_Ewmyc5S_MOCm7oSCckkqVOmk5rMYPv2ztC6dfVtzr2X7wBwjdEEI4GmCEnCBScTggieYMkwz8UJGGFGSZZjwk7BaGCyAToHFymtEcKMCzICYlnVbdWs4CbYrnYJ-hBh--XgrEu1bqyLUNcrZ6KGwcPXj93n9HYHG3h3Cc68rpO7Ot4xeH98WM6fs8Xb08t8tshKSkWbWUeZ455K6Q03xghKPbbcScYpzS0piJDYlIKIgiNaCJobpq10pBSGlRbRMbg59G5j-O5catU6dLHpJ1UfJgXPcy57ih2oMoaUovNqG6uNjnuFkRokqT9JapCkjpL63P0hVzX94xv9E2JtVav3dYg-6qaskqL_V_wChOdrWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622674479</pqid></control><display><type>article</type><title>Tilting modules for the Auslander algebra of K[x]/(x n )</title><source>Taylor and Francis Science and Technology Collection</source><creator>Geuenich, Jan</creator><creatorcontrib>Geuenich, Jan</creatorcontrib><description>We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of
and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2021.1951748</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Auslander algebra ; braid group ; Braid theory ; Braiding ; Isomorphism ; Modules ; Permutations ; tilting theory</subject><ispartof>Communications in algebra, 2022-01, Vol.50 (1), p.82-95</ispartof><rights>2021 Taylor & Francis Group, LLC 2021</rights><rights>2021 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03</citedby><cites>FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Geuenich, Jan</creatorcontrib><title>Tilting modules for the Auslander algebra of K[x]/(x n )</title><title>Communications in algebra</title><description>We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of
and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules.</description><subject>Auslander algebra</subject><subject>braid group</subject><subject>Braid theory</subject><subject>Braiding</subject><subject>Isomorphism</subject><subject>Modules</subject><subject>Permutations</subject><subject>tilting theory</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWKuPIATc6GLa_Ewmyc5S_MOCm7oSCckkqVOmk5rMYPv2ztC6dfVtzr2X7wBwjdEEI4GmCEnCBScTggieYMkwz8UJGGFGSZZjwk7BaGCyAToHFymtEcKMCzICYlnVbdWs4CbYrnYJ-hBh--XgrEu1bqyLUNcrZ6KGwcPXj93n9HYHG3h3Cc68rpO7Ot4xeH98WM6fs8Xb08t8tshKSkWbWUeZ455K6Q03xghKPbbcScYpzS0piJDYlIKIgiNaCJobpq10pBSGlRbRMbg59G5j-O5catU6dLHpJ1UfJgXPcy57ih2oMoaUovNqG6uNjnuFkRokqT9JapCkjpL63P0hVzX94xv9E2JtVav3dYg-6qaskqL_V_wChOdrWA</recordid><startdate>20220117</startdate><enddate>20220117</enddate><creator>Geuenich, Jan</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220117</creationdate><title>Tilting modules for the Auslander algebra of K[x]/(x n )</title><author>Geuenich, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Auslander algebra</topic><topic>braid group</topic><topic>Braid theory</topic><topic>Braiding</topic><topic>Isomorphism</topic><topic>Modules</topic><topic>Permutations</topic><topic>tilting theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geuenich, Jan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geuenich, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tilting modules for the Auslander algebra of K[x]/(x n )</atitle><jtitle>Communications in algebra</jtitle><date>2022-01-17</date><risdate>2022</risdate><volume>50</volume><issue>1</issue><spage>82</spage><epage>95</epage><pages>82-95</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of
and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00927872.2021.1951748</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-7872 |
ispartof | Communications in algebra, 2022-01, Vol.50 (1), p.82-95 |
issn | 0092-7872 1532-4125 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00927872_2021_1951748 |
source | Taylor and Francis Science and Technology Collection |
subjects | Auslander algebra braid group Braid theory Braiding Isomorphism Modules Permutations tilting theory |
title | Tilting modules for the Auslander algebra of K[x]/(x n ) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T17%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tilting%20modules%20for%20the%20Auslander%20algebra%20of%20K%5Bx%5D/(x%20n%20)&rft.jtitle=Communications%20in%20algebra&rft.au=Geuenich,%20Jan&rft.date=2022-01-17&rft.volume=50&rft.issue=1&rft.spage=82&rft.epage=95&rft.pages=82-95&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2021.1951748&rft_dat=%3Cproquest_cross%3E2622674479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622674479&rft_id=info:pmid/&rfr_iscdi=true |