Loading…

Tilting modules for the Auslander algebra of K[x]/(x n )

We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules.

Saved in:
Bibliographic Details
Published in:Communications in algebra 2022-01, Vol.50 (1), p.82-95
Main Author: Geuenich, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03
cites cdi_FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03
container_end_page 95
container_issue 1
container_start_page 82
container_title Communications in algebra
container_volume 50
creator Geuenich, Jan
description We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules.
doi_str_mv 10.1080/00927872.2021.1951748
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00927872_2021_1951748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622674479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKuPIATc6GLa_Ewmyc5S_MOCm7oSCckkqVOmk5rMYPv2ztC6dfVtzr2X7wBwjdEEI4GmCEnCBScTggieYMkwz8UJGGFGSZZjwk7BaGCyAToHFymtEcKMCzICYlnVbdWs4CbYrnYJ-hBh--XgrEu1bqyLUNcrZ6KGwcPXj93n9HYHG3h3Cc68rpO7Ot4xeH98WM6fs8Xb08t8tshKSkWbWUeZ455K6Q03xghKPbbcScYpzS0piJDYlIKIgiNaCJobpq10pBSGlRbRMbg59G5j-O5catU6dLHpJ1UfJgXPcy57ih2oMoaUovNqG6uNjnuFkRokqT9JapCkjpL63P0hVzX94xv9E2JtVav3dYg-6qaskqL_V_wChOdrWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622674479</pqid></control><display><type>article</type><title>Tilting modules for the Auslander algebra of K[x]/(x n )</title><source>Taylor and Francis Science and Technology Collection</source><creator>Geuenich, Jan</creator><creatorcontrib>Geuenich, Jan</creatorcontrib><description>We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2021.1951748</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Auslander algebra ; braid group ; Braid theory ; Braiding ; Isomorphism ; Modules ; Permutations ; tilting theory</subject><ispartof>Communications in algebra, 2022-01, Vol.50 (1), p.82-95</ispartof><rights>2021 Taylor &amp; Francis Group, LLC 2021</rights><rights>2021 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03</citedby><cites>FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Geuenich, Jan</creatorcontrib><title>Tilting modules for the Auslander algebra of K[x]/(x n )</title><title>Communications in algebra</title><description>We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules.</description><subject>Auslander algebra</subject><subject>braid group</subject><subject>Braid theory</subject><subject>Braiding</subject><subject>Isomorphism</subject><subject>Modules</subject><subject>Permutations</subject><subject>tilting theory</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWKuPIATc6GLa_Ewmyc5S_MOCm7oSCckkqVOmk5rMYPv2ztC6dfVtzr2X7wBwjdEEI4GmCEnCBScTggieYMkwz8UJGGFGSZZjwk7BaGCyAToHFymtEcKMCzICYlnVbdWs4CbYrnYJ-hBh--XgrEu1bqyLUNcrZ6KGwcPXj93n9HYHG3h3Cc68rpO7Ot4xeH98WM6fs8Xb08t8tshKSkWbWUeZ455K6Q03xghKPbbcScYpzS0piJDYlIKIgiNaCJobpq10pBSGlRbRMbg59G5j-O5catU6dLHpJ1UfJgXPcy57ih2oMoaUovNqG6uNjnuFkRokqT9JapCkjpL63P0hVzX94xv9E2JtVav3dYg-6qaskqL_V_wChOdrWA</recordid><startdate>20220117</startdate><enddate>20220117</enddate><creator>Geuenich, Jan</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220117</creationdate><title>Tilting modules for the Auslander algebra of K[x]/(x n )</title><author>Geuenich, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Auslander algebra</topic><topic>braid group</topic><topic>Braid theory</topic><topic>Braiding</topic><topic>Isomorphism</topic><topic>Modules</topic><topic>Permutations</topic><topic>tilting theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geuenich, Jan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geuenich, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tilting modules for the Auslander algebra of K[x]/(x n )</atitle><jtitle>Communications in algebra</jtitle><date>2022-01-17</date><risdate>2022</risdate><volume>50</volume><issue>1</issue><spage>82</spage><epage>95</epage><pages>82-95</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00927872.2021.1951748</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2022-01, Vol.50 (1), p.82-95
issn 0092-7872
1532-4125
language eng
recordid cdi_crossref_primary_10_1080_00927872_2021_1951748
source Taylor and Francis Science and Technology Collection
subjects Auslander algebra
braid group
Braid theory
Braiding
Isomorphism
Modules
Permutations
tilting theory
title Tilting modules for the Auslander algebra of K[x]/(x n )
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T17%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tilting%20modules%20for%20the%20Auslander%20algebra%20of%20K%5Bx%5D/(x%20n%20)&rft.jtitle=Communications%20in%20algebra&rft.au=Geuenich,%20Jan&rft.date=2022-01-17&rft.volume=50&rft.issue=1&rft.spage=82&rft.epage=95&rft.pages=82-95&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2021.1951748&rft_dat=%3Cproquest_cross%3E2622674479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-de35e7f399fb7bbb833f1d7e957334d262891bc82867036834b5ad9e2c8b5cd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622674479&rft_id=info:pmid/&rfr_iscdi=true