Loading…
Twisted affine Lie superalgebras and integrability
A twisted affine Lie superalgebra is either a twisted affine Lie algebra or of one of the types X = A ( 2 m − 1 , 2 n − 1 ) ( 2 ) ( m , n ≠ 0 , ( m , n ) ≠ ( 1 , 1 ) ), A ( 2 m , 2 n ) ( 4 ) , A ( 2 m , 2 n − 1 ) ( 2 ) or D ( m + 1 , n ) ( 2 ) ( m ≥ 0 , n > 0 ). It is known that irreducible int...
Saved in:
Published in: | Communications in algebra 2024-08, Vol.52 (8), p.3643-3654 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A twisted affine Lie superalgebra is either a twisted affine Lie algebra or of one of the types
X
=
A
(
2
m
−
1
,
2
n
−
1
)
(
2
)
(
m
,
n
≠
0
,
(
m
,
n
)
≠
(
1
,
1
)
),
A
(
2
m
,
2
n
)
(
4
)
,
A
(
2
m
,
2
n
−
1
)
(
2
)
or
D
(
m
+
1
,
n
)
(
2
)
(
m
≥
0
,
n
>
0
). It is known that irreducible integrable highest weight modules over a twisted affine Lie superalgebra of type X do not exist if
m
≠
0.
In this paper, we show that nonzero level irreducible integrable finite weight modules over a twisted affine Lie superalgebra of type X do not exist if
m
≠
0. |
---|---|
ISSN: | 0092-7872 1532-4125 |
DOI: | 10.1080/00927872.2024.2326070 |