Loading…
Dynamic Modeling and Metabolic Flux Analysis for Optimized Production of Rhamnolipids
A comprehensive metabolic network based on the fundamental pathways representing the central metabolism of rhamnolipid by Pseudomonas aeruginosa is proposed and a dynamic model compatible with the underlying metabolic network is developed involving the macro-reactions derived from the elementary flu...
Saved in:
Published in: | Chemical engineering communications 2016-03, Vol.203 (3), p.326-338 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A comprehensive metabolic network based on the fundamental pathways representing the central metabolism of rhamnolipid by Pseudomonas aeruginosa is proposed and a dynamic model compatible with the underlying metabolic network is developed involving the macro-reactions derived from the elementary flux modes of the reaction network. The experimentally validated mathematical model is then coupled with a global optimization technique called differential evolution (DE) to optimize the medium composition as well as the extracellular and intracellular fluxes of the metabolic network. The analysis of the results shows the usefulness of the integrated approach involving the development of a dynamic model based on the metabolic network structure and model-based optimization of the medium composition and metabolic fluxes by an efficient evolutionary optimization technique to enhance the productivity of rhamnolipid. |
---|---|
ISSN: | 0098-6445 1563-5201 |
DOI: | 10.1080/00986445.2014.996638 |