Loading…

Evaluation of Crude Oil Heat Exchanger Network Fouling Behavior Under Aging Conditions for Scheduled Cleaning

Heat exchanger network (HEN) fouling is an endemic operational challenge prevalent in many process industries. Its impact on both plant operating cost and productivity is significant and can be compounded by aging effects of the foulant. In this paper, we model and simulate the effect of aging on tu...

Full description

Saved in:
Bibliographic Details
Published in:Heat transfer engineering 2016-10, Vol.37 (15), p.1211-1230
Main Authors: Diaby, Abdullatif Lacina, Miklavcic, Stanley Joseph, Bari, Saiful, Addai-Mensah, Jonas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heat exchanger network (HEN) fouling is an endemic operational challenge prevalent in many process industries. Its impact on both plant operating cost and productivity is significant and can be compounded by aging effects of the foulant. In this paper, we model and simulate the effect of aging on tube-side fouling and cleaning dynamics in a crude oil refinery preheat train (PHT) comprising a 14-unit HEN. A prescient, HEN modeling and dynamic simulation were performed wherein the transients of fouling and aging as well as the interactions between individual units were captured. To assess the temporal effects, different crude oil deposit (gel) aging scenarios (no aging vs. slow, medial, and fast aging) in the downstream units were considered for the PHTs' overall heat recovery, cleaning options, and operability. The results show that the deleterious impact of fouling and concomitant aging, quantified in terms of thermal resistances, was significantly reduced by fast aging as opposed to medial, slow, or no aging of the gel deposit. Faster aging rate reflected improved heat recovery and a lesser demand for and lower cost of PHT cleaning. The concomitant higher growth of coke deposit due to aging, however, resulted in greater hydraulic resistance, which is inimical to operability.
ISSN:0145-7632
1521-0537
DOI:10.1080/01457632.2015.1119583