Loading…
Inference and Estimation for Random Effects in High-Dimensional Linear Mixed Models
We consider three problems in high-dimensional linear mixed models. Without any assumptions on the design for the fixed effects, we construct asymptotic statistics for testing whether a collection of random effects is zero, derive an asymptotic confidence interval for a single random effect at the p...
Saved in:
Published in: | Journal of the American Statistical Association 2023-07, Vol.118 (543), p.1682-1691 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider three problems in high-dimensional linear mixed models. Without any assumptions on the design for the fixed effects, we construct asymptotic statistics for testing whether a collection of random effects is zero, derive an asymptotic confidence interval for a single random effect at the parametric rate
, and propose an empirical Bayes estimator for a part of the mean vector in ANOVA type models that performs asymptotically as well as the oracle Bayes estimator. We support our theoretical results with numerical simulations and provide comparisons with oracle estimators. The procedures developed are applied to the Trends in International Mathematics and Sciences Study (TIMSS) data.
Supplementary materials
for this article are available online. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1080/01621459.2021.2004896 |