Loading…

Efficacy and underlying mechanisms of the essential oil derived from Rosmarinus officinalis against Aleuroglyphus ovatus (Acari: Acaridae)

Rosemary (Rosmarinus officinalis L) essential oil (REO) has an inhibitory effect against pests and is regarded as a safe alternative to synthetic acaricides. This study investigated the acaricidal and repellent activity of REO and underlying mechanisms against Aleuroglyphus ovatus, an important mite...

Full description

Saved in:
Bibliographic Details
Published in:International journal of acarology 2024-04, Vol.50 (3), p.209-221
Main Authors: Zhang, Luoling, Teng, Qiao, Guo, Junjie, Zou, Minghui, Xue, Qiqi, Zhao, Jinhong, Li, Yuanyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rosemary (Rosmarinus officinalis L) essential oil (REO) has an inhibitory effect against pests and is regarded as a safe alternative to synthetic acaricides. This study investigated the acaricidal and repellent activity of REO and underlying mechanisms against Aleuroglyphus ovatus, an important mite pest of stored products. Gas Chromatography-Mass Spectrometry analysis of REO indicated that the compounds of 1,8-cineole (25.20%) was the highest. REO at 13% concentration provided the highest repellent effect (92.67%) on A. ovatus, and the lowest repellent activity (48.67%) was at 0.8% concentration. Microscopic observations revealed that the mite epidermis started to shrink after treatment with REO at 6 h post-treatment. The enzyme level of catalase (CAT), acetylcholinesterase (AChE) and superoxide dismutase (SOD) decreased significantly (P < 0.05), whereas there was a significant increase (P < 0.05) in nitric oxide synthase (NOS) and glutathione-s-transferases (GST) activities in A. ovatus treated with REO. In the molecular docking study, camphor and 1,8-cineole, the main monoterpenes of REO, bind more closely with CAT and AChE, and PI-conjugated interaction, hydrogen bonding, and hydrophobic were found by molecular docking 3D model. Overall, our results indicate the potential of REO as an effective botanical acaricide to manage A. ovatus.
ISSN:0164-7954
1945-3892
DOI:10.1080/01647954.2024.2311668