Loading…
Lagrange duality, stability and subdifferentials in vector optimization
Lagrange duality theorems for vector and set optimization problems which are based on a consequent usage of infimum and supremum (in the sense of greatest lower and least upper bounds with respect to a partial ordering) have been recently proven. In this note, we provide an alternative proof of stro...
Saved in:
Published in: | Optimization 2013-03, Vol.62 (3), p.415-428 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lagrange duality theorems for vector and set optimization problems which are based on a consequent usage of infimum and supremum (in the sense of greatest lower and least upper bounds with respect to a partial ordering) have been recently proven. In this note, we provide an alternative proof of strong duality for such problems via suitable stability and subdifferential notions. In contrast to most of the related results in the literature, the space of dual variables is the same as in the scalar case, i.e. a dual variable is a vector rather than an operator. We point out that duality with operators is an easy consequence of duality with vectors as dual variables. |
---|---|
ISSN: | 0233-1934 1029-4945 |
DOI: | 10.1080/02331934.2013.766187 |