Loading…
A fusion-based data assimilation framework for runoff prediction considering multiple sources of precipitation
A fusion-based framework, in which a particle filter Markov chain Monte Carlo (PFMCMC) data assimilation method was coupled with the hydrological Sacramento Soil Moisture Accounting Model (SAC-SMA), was developed to improve the model's capacity to predict one-day-ahead runoff. A case study was...
Saved in:
Published in: | Hydrological sciences journal 2023-03, Vol.68 (4), p.614-629 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A fusion-based framework, in which a particle filter Markov chain Monte Carlo (PFMCMC) data assimilation method was coupled with the hydrological Sacramento Soil Moisture Accounting Model (SAC-SMA), was developed to improve the model's capacity to predict one-day-ahead runoff. A case study was applied where mean daily precipitation from multiple sources served as forcing data in the data assimilation procedure, while ground station and multiple bias-corrected satellite-based precipitation datasets served as precipitation input datasets. The model training period used six years (2002-2007) of data to determine optimal weights through a genetic algorithm optimization model, while two years (2008-2009) were used to test the model. The proposed framework, applied to a real case study, improved SAC-SMA runoff prediction accuracy by incorporating precipitation datasets from multiple sources in the data assimilation procedure. On average, the PFMCMC-based data assimilation procedure led to a 13.7% improvement in SAC-SMA model performance metrics (NSE, MAB, RMSE, RMSRE, RMRE). |
---|---|
ISSN: | 0262-6667 2150-3435 |
DOI: | 10.1080/02626667.2023.2180375 |