Loading…
Joint GEEs for multivariate correlated data with incomplete binary outcomes
This study considers a fully-parametric but uncongenial multiple imputation (MI) inference to jointly analyze incomplete binary response variables observed in a correlated data settings. Multiple imputation model is specified as a fully-parametric model based on a multivariate extension of mixed-eff...
Saved in:
Published in: | Journal of applied statistics 2017-08, Vol.44 (11), p.1920-1937 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study considers a fully-parametric but uncongenial multiple imputation (MI) inference to jointly analyze incomplete binary response variables observed in a correlated data settings. Multiple imputation model is specified as a fully-parametric model based on a multivariate extension of mixed-effects models. Dichotomized imputed datasets are then analyzed using joint GEE models where covariates are associated with the marginal mean of responses with response-specific regression coefficients and a Kronecker product is accommodated for cluster-specific correlation structure for a given response variable and correlation structure between multiple response variables. The validity of the proposed MI-based JGEE (MI-JGEE) approach is assessed through a Monte Carlo simulation study under different scenarios. The simulation results, which are evaluated in terms of bias, mean-squared error, and coverage rate, show that MI-JGEE has promising inferential properties even when the underlying multiple imputation is misspecified. Finally, Adolescent Alcohol Prevention Trial data are used for illustration. |
---|---|
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664763.2016.1238049 |