Loading…

Foundations of compositional models: inference

Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the ap...

Full description

Saved in:
Bibliographic Details
Published in:International journal of general systems 2021-05, Vol.50 (4), p.409-433
Main Authors: Bína, Vl, Jiroušek, R., Kratochvíl, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c286t-38683d913b22b8da0f453d545459e16ce675b307cd6a09fc561988e5e4d023763
container_end_page 433
container_issue 4
container_start_page 409
container_title International journal of general systems
container_volume 50
creator Bína, Vl
Jiroušek, R.
Kratochvíl, V.
description Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the application of these models to practical problems would be impossible. The methods of inference cannot do without a possibility to focus on a part of the considered multidimensional model and to incorporate data describing the actual situation. Thus the paper shows how to compute marginals and conditionals of multidimensional models. Also, the paper briefly solves the problem of computing the effect of an intervention, in case the model is interpreted as a causal model.
doi_str_mv 10.1080/03081079.2021.1895142
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03081079_2021_1895142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528652697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-38683d913b22b8da0f453d545459e16ce675b307cd6a09fc561988e5e4d023763</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-BKHguXUmadLEkyKuCgte9Byy-QNd2mZNush-e1t2vcochoH33sz8CLlFqBAk3AMDidCoigLFCqXiWNMzskAuWMkR6nOymDXlLLokVzlvAZBxWS9ItYr7wZmxjUMuYihs7Hcxt_NsuqKPznf5oWiH4JMfrL8mF8F02d-c-pJ8rV4-n9_K9cfr-_PTurRUirFkUkjmFLINpRvpDISaM8frqZRHYb1o-IZBY50woILlApWUnvvaAWWNYEtyd8zdpfi993nU27hP00lZUz6t4FSoZlLxo8qmmHPyQe9S25t00Ah6RqP_0OgZjT6hmXyPR9_0V0y9-Ympc3o0hy6mkMxg26zZ_xG_r6pojA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528652697</pqid></control><display><type>article</type><title>Foundations of compositional models: inference</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Bína, Vl ; Jiroušek, R. ; Kratochvíl, V.</creator><creatorcontrib>Bína, Vl ; Jiroušek, R. ; Kratochvíl, V.</creatorcontrib><description>Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the application of these models to practical problems would be impossible. The methods of inference cannot do without a possibility to focus on a part of the considered multidimensional model and to incorporate data describing the actual situation. Thus the paper shows how to compute marginals and conditionals of multidimensional models. Also, the paper briefly solves the problem of computing the effect of an intervention, in case the model is interpreted as a causal model.</description><identifier>ISSN: 0308-1079</identifier><identifier>EISSN: 1563-5104</identifier><identifier>DOI: 10.1080/03081079.2021.1895142</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Bayesian analysis ; Causality ; conditioning ; Inference ; intervention ; marginalization ; multidimensionality ; Probability distribution ; Probability theory</subject><ispartof>International journal of general systems, 2021-05, Vol.50 (4), p.409-433</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-38683d913b22b8da0f453d545459e16ce675b307cd6a09fc561988e5e4d023763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bína, Vl</creatorcontrib><creatorcontrib>Jiroušek, R.</creatorcontrib><creatorcontrib>Kratochvíl, V.</creatorcontrib><title>Foundations of compositional models: inference</title><title>International journal of general systems</title><description>Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the application of these models to practical problems would be impossible. The methods of inference cannot do without a possibility to focus on a part of the considered multidimensional model and to incorporate data describing the actual situation. Thus the paper shows how to compute marginals and conditionals of multidimensional models. Also, the paper briefly solves the problem of computing the effect of an intervention, in case the model is interpreted as a causal model.</description><subject>Bayesian analysis</subject><subject>Causality</subject><subject>conditioning</subject><subject>Inference</subject><subject>intervention</subject><subject>marginalization</subject><subject>multidimensionality</subject><subject>Probability distribution</subject><subject>Probability theory</subject><issn>0308-1079</issn><issn>1563-5104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-BKHguXUmadLEkyKuCgte9Byy-QNd2mZNush-e1t2vcochoH33sz8CLlFqBAk3AMDidCoigLFCqXiWNMzskAuWMkR6nOymDXlLLokVzlvAZBxWS9ItYr7wZmxjUMuYihs7Hcxt_NsuqKPznf5oWiH4JMfrL8mF8F02d-c-pJ8rV4-n9_K9cfr-_PTurRUirFkUkjmFLINpRvpDISaM8frqZRHYb1o-IZBY50woILlApWUnvvaAWWNYEtyd8zdpfi993nU27hP00lZUz6t4FSoZlLxo8qmmHPyQe9S25t00Ah6RqP_0OgZjT6hmXyPR9_0V0y9-Ympc3o0hy6mkMxg26zZ_xG_r6pojA</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>Bína, Vl</creator><creator>Jiroušek, R.</creator><creator>Kratochvíl, V.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210519</creationdate><title>Foundations of compositional models: inference</title><author>Bína, Vl ; Jiroušek, R. ; Kratochvíl, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-38683d913b22b8da0f453d545459e16ce675b307cd6a09fc561988e5e4d023763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Causality</topic><topic>conditioning</topic><topic>Inference</topic><topic>intervention</topic><topic>marginalization</topic><topic>multidimensionality</topic><topic>Probability distribution</topic><topic>Probability theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bína, Vl</creatorcontrib><creatorcontrib>Jiroušek, R.</creatorcontrib><creatorcontrib>Kratochvíl, V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of general systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bína, Vl</au><au>Jiroušek, R.</au><au>Kratochvíl, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foundations of compositional models: inference</atitle><jtitle>International journal of general systems</jtitle><date>2021-05-19</date><risdate>2021</risdate><volume>50</volume><issue>4</issue><spage>409</spage><epage>433</epage><pages>409-433</pages><issn>0308-1079</issn><eissn>1563-5104</eissn><abstract>Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the application of these models to practical problems would be impossible. The methods of inference cannot do without a possibility to focus on a part of the considered multidimensional model and to incorporate data describing the actual situation. Thus the paper shows how to compute marginals and conditionals of multidimensional models. Also, the paper briefly solves the problem of computing the effect of an intervention, in case the model is interpreted as a causal model.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03081079.2021.1895142</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-1079
ispartof International journal of general systems, 2021-05, Vol.50 (4), p.409-433
issn 0308-1079
1563-5104
language eng
recordid cdi_crossref_primary_10_1080_03081079_2021_1895142
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Bayesian analysis
Causality
conditioning
Inference
intervention
marginalization
multidimensionality
Probability distribution
Probability theory
title Foundations of compositional models: inference
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foundations%20of%20compositional%20models:%20inference&rft.jtitle=International%20journal%20of%20general%20systems&rft.au=B%C3%ADna,%20Vl&rft.date=2021-05-19&rft.volume=50&rft.issue=4&rft.spage=409&rft.epage=433&rft.pages=409-433&rft.issn=0308-1079&rft.eissn=1563-5104&rft_id=info:doi/10.1080/03081079.2021.1895142&rft_dat=%3Cproquest_cross%3E2528652697%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-38683d913b22b8da0f453d545459e16ce675b307cd6a09fc561988e5e4d023763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528652697&rft_id=info:pmid/&rfr_iscdi=true