Loading…
Foundations of compositional models: inference
Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the ap...
Saved in:
Published in: | International journal of general systems 2021-05, Vol.50 (4), p.409-433 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c286t-38683d913b22b8da0f453d545459e16ce675b307cd6a09fc561988e5e4d023763 |
container_end_page | 433 |
container_issue | 4 |
container_start_page | 409 |
container_title | International journal of general systems |
container_volume | 50 |
creator | Bína, Vl Jiroušek, R. Kratochvíl, V. |
description | Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the application of these models to practical problems would be impossible.
The methods of inference cannot do without a possibility to focus on a part of the considered multidimensional model and to incorporate data describing the actual situation. Thus the paper shows how to compute marginals and conditionals of multidimensional models. Also, the paper briefly solves the problem of computing the effect of an intervention, in case the model is interpreted as a causal model. |
doi_str_mv | 10.1080/03081079.2021.1895142 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03081079_2021_1895142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528652697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-38683d913b22b8da0f453d545459e16ce675b307cd6a09fc561988e5e4d023763</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-BKHguXUmadLEkyKuCgte9Byy-QNd2mZNush-e1t2vcochoH33sz8CLlFqBAk3AMDidCoigLFCqXiWNMzskAuWMkR6nOymDXlLLokVzlvAZBxWS9ItYr7wZmxjUMuYihs7Hcxt_NsuqKPznf5oWiH4JMfrL8mF8F02d-c-pJ8rV4-n9_K9cfr-_PTurRUirFkUkjmFLINpRvpDISaM8frqZRHYb1o-IZBY50woILlApWUnvvaAWWNYEtyd8zdpfi993nU27hP00lZUz6t4FSoZlLxo8qmmHPyQe9S25t00Ah6RqP_0OgZjT6hmXyPR9_0V0y9-Ympc3o0hy6mkMxg26zZ_xG_r6pojA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528652697</pqid></control><display><type>article</type><title>Foundations of compositional models: inference</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Bína, Vl ; Jiroušek, R. ; Kratochvíl, V.</creator><creatorcontrib>Bína, Vl ; Jiroušek, R. ; Kratochvíl, V.</creatorcontrib><description>Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the application of these models to practical problems would be impossible.
The methods of inference cannot do without a possibility to focus on a part of the considered multidimensional model and to incorporate data describing the actual situation. Thus the paper shows how to compute marginals and conditionals of multidimensional models. Also, the paper briefly solves the problem of computing the effect of an intervention, in case the model is interpreted as a causal model.</description><identifier>ISSN: 0308-1079</identifier><identifier>EISSN: 1563-5104</identifier><identifier>DOI: 10.1080/03081079.2021.1895142</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Bayesian analysis ; Causality ; conditioning ; Inference ; intervention ; marginalization ; multidimensionality ; Probability distribution ; Probability theory</subject><ispartof>International journal of general systems, 2021-05, Vol.50 (4), p.409-433</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-38683d913b22b8da0f453d545459e16ce675b307cd6a09fc561988e5e4d023763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bína, Vl</creatorcontrib><creatorcontrib>Jiroušek, R.</creatorcontrib><creatorcontrib>Kratochvíl, V.</creatorcontrib><title>Foundations of compositional models: inference</title><title>International journal of general systems</title><description>Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the application of these models to practical problems would be impossible.
The methods of inference cannot do without a possibility to focus on a part of the considered multidimensional model and to incorporate data describing the actual situation. Thus the paper shows how to compute marginals and conditionals of multidimensional models. Also, the paper briefly solves the problem of computing the effect of an intervention, in case the model is interpreted as a causal model.</description><subject>Bayesian analysis</subject><subject>Causality</subject><subject>conditioning</subject><subject>Inference</subject><subject>intervention</subject><subject>marginalization</subject><subject>multidimensionality</subject><subject>Probability distribution</subject><subject>Probability theory</subject><issn>0308-1079</issn><issn>1563-5104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-BKHguXUmadLEkyKuCgte9Byy-QNd2mZNush-e1t2vcochoH33sz8CLlFqBAk3AMDidCoigLFCqXiWNMzskAuWMkR6nOymDXlLLokVzlvAZBxWS9ItYr7wZmxjUMuYihs7Hcxt_NsuqKPznf5oWiH4JMfrL8mF8F02d-c-pJ8rV4-n9_K9cfr-_PTurRUirFkUkjmFLINpRvpDISaM8frqZRHYb1o-IZBY50woILlApWUnvvaAWWNYEtyd8zdpfi993nU27hP00lZUz6t4FSoZlLxo8qmmHPyQe9S25t00Ah6RqP_0OgZjT6hmXyPR9_0V0y9-Ympc3o0hy6mkMxg26zZ_xG_r6pojA</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>Bína, Vl</creator><creator>Jiroušek, R.</creator><creator>Kratochvíl, V.</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210519</creationdate><title>Foundations of compositional models: inference</title><author>Bína, Vl ; Jiroušek, R. ; Kratochvíl, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-38683d913b22b8da0f453d545459e16ce675b307cd6a09fc561988e5e4d023763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Causality</topic><topic>conditioning</topic><topic>Inference</topic><topic>intervention</topic><topic>marginalization</topic><topic>multidimensionality</topic><topic>Probability distribution</topic><topic>Probability theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bína, Vl</creatorcontrib><creatorcontrib>Jiroušek, R.</creatorcontrib><creatorcontrib>Kratochvíl, V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of general systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bína, Vl</au><au>Jiroušek, R.</au><au>Kratochvíl, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foundations of compositional models: inference</atitle><jtitle>International journal of general systems</jtitle><date>2021-05-19</date><risdate>2021</risdate><volume>50</volume><issue>4</issue><spage>409</spage><epage>433</epage><pages>409-433</pages><issn>0308-1079</issn><eissn>1563-5104</eissn><abstract>Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the application of these models to practical problems would be impossible.
The methods of inference cannot do without a possibility to focus on a part of the considered multidimensional model and to incorporate data describing the actual situation. Thus the paper shows how to compute marginals and conditionals of multidimensional models. Also, the paper briefly solves the problem of computing the effect of an intervention, in case the model is interpreted as a causal model.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/03081079.2021.1895142</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-1079 |
ispartof | International journal of general systems, 2021-05, Vol.50 (4), p.409-433 |
issn | 0308-1079 1563-5104 |
language | eng |
recordid | cdi_crossref_primary_10_1080_03081079_2021_1895142 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Bayesian analysis Causality conditioning Inference intervention marginalization multidimensionality Probability distribution Probability theory |
title | Foundations of compositional models: inference |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foundations%20of%20compositional%20models:%20inference&rft.jtitle=International%20journal%20of%20general%20systems&rft.au=B%C3%ADna,%20Vl&rft.date=2021-05-19&rft.volume=50&rft.issue=4&rft.spage=409&rft.epage=433&rft.pages=409-433&rft.issn=0308-1079&rft.eissn=1563-5104&rft_id=info:doi/10.1080/03081079.2021.1895142&rft_dat=%3Cproquest_cross%3E2528652697%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-38683d913b22b8da0f453d545459e16ce675b307cd6a09fc561988e5e4d023763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528652697&rft_id=info:pmid/&rfr_iscdi=true |