Loading…
GCD matrices, posets, and nonintersecting paths
We show that with any finite partially ordered set P (which need not be a lattice) one can associate a matrix whose determinant factors nicely. This was also noted by D.A. Smith, although his proof uses manipulations in the incidence algebra of P while ours is combinatorial, using nonintersecting pa...
Saved in:
Published in: | Linear & multilinear algebra 2005-03, Vol.53 (2), p.75-84 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that with any finite partially ordered set P (which need not be a lattice) one can associate a matrix whose determinant factors nicely. This was also noted by D.A. Smith, although his proof uses manipulations in the incidence algebra of P while ours is combinatorial, using nonintersecting paths in a digraph. As corollaries, we obtain new proofs for and generalizations of a number of results in the literature about GCD matrices and their relatives. |
---|---|
ISSN: | 0308-1087 1563-5139 |
DOI: | 10.1080/03081080500054612 |