Loading…

Dispersive Estimates of Solutions to the Wave Equation with a Potential in Dimensions n ≥ 4

We prove dispersive estimates for solutions to the wave equation with a real-valued potential V ∈ L ∞ (R n ), n ≥ 4, satisfying V(x) = O(⟨x⟩ −(n+1)/2−ε ), ε > 0.

Saved in:
Bibliographic Details
Published in:Communications in partial differential equations 2006-11, Vol.31 (11), p.1709-1733
Main Author: Vodev, Georgi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove dispersive estimates for solutions to the wave equation with a real-valued potential V ∈ L ∞ (R n ), n ≥ 4, satisfying V(x) = O(⟨x⟩ −(n+1)/2−ε ), ε > 0.
ISSN:0360-5302
1532-4133
DOI:10.1080/03605300600635103