Loading…
Variance-stabilizing and Confidence-stabilizing Transformations for the Normal Correlation Coefficient with Known Variances
Fosdick and Raftery (2012) recently encountered the problem of inference for a bivariate normal correlation coefficient ρ with known variances. We derive a variance-stabilizing transformation y(ρ) analogous to Fisher's classical z-transformation for the unknown-variance case. Adjusting y for th...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2016-07, Vol.45 (6), p.1918-1935 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fosdick and Raftery (2012) recently encountered the problem of inference for a bivariate normal correlation coefficient ρ with known variances. We derive a variance-stabilizing transformation y(ρ) analogous to Fisher's classical z-transformation for the unknown-variance case. Adjusting y for the sample size n produces an improved "confidence-stabilizing" transformation y
n
(ρ) that provides more accurate interval estimates for ρ than the known-variance MLE. Interestingly, the z transformation applied to the unknown-but-equal-variance MLE performs well in the known-variance case for smaller values of |ρ|. Both methods are useful for comparing two or more correlation coefficients in the known-variance case. |
---|---|
ISSN: | 0361-0918 1532-4141 |
DOI: | 10.1080/03610918.2014.882948 |