Loading…
The maximum principles for partially observed risk-sensitive optimal controls of Markov regime-switching jump-diffusion system
This paper studies partially observed risk-sensitive optimal control problems with correlated noises between the system and the observation. It is assumed that the state process is governed by a continuous-time Markov regime-switching jump-diffusion process and the cost functional is of an exponenti...
Saved in:
Published in: | Stochastic analysis and applications 2018-11, Vol.36 (5), p.782-811 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies partially observed risk-sensitive optimal control problems with correlated noises between the system and the observation. It is assumed that the state process is governed by a continuous-time Markov regime-switching jump-diffusion process and the cost functional is of an exponential-of-integral type. By virtue of a classical spike variational approach, we obtain two general maximum principles for the aforementioned problems. Moreover, under certain convexity assumptions on both the control domain and the Hamiltonian, we give a sufficient condition for the optimality. For illustration, a linear-quadratic risk-sensitive control problem is proposed and solved using the main results. As a natural deduction, a fully observed risk-sensitive maximum principle is also obtained and applied to study a risk-sensitive portfolio optimization problem. Closed-form expressions for both the optimal portfolio and the corresponding optimal cost functional are obtained. |
---|---|
ISSN: | 0736-2994 1532-9356 |
DOI: | 10.1080/07362994.2018.1465824 |