Loading…

Biodiversity of Bacteriocin-Producing Lactic Acid Bacteria from Mexican Regional Cheeses and their Contribution to Milk Fermentation

The aim of this work was to examine the biodiversity of bacteriocin-producing lactic acid bacteria from homemade cheeses produced in Veracruz (México) and assess their contribution as adjunct cultures in dairy products. Ninety-three presumptive bacteriocinogenic strains were detected by direct antag...

Full description

Saved in:
Bibliographic Details
Published in:Food biotechnology 2016-07, Vol.30 (3), p.155-172
Main Authors: Portilla-Vázquez, Silvia, Rodríguez, Ana, Ramírez-Lepe, Mario, Mendoza-García, Patricia G., Martínez, Beatriz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this work was to examine the biodiversity of bacteriocin-producing lactic acid bacteria from homemade cheeses produced in Veracruz (México) and assess their contribution as adjunct cultures in dairy products. Ninety-three presumptive bacteriocinogenic strains were detected by direct antagonism assays and 29 of them were active against Enterococcus faecalis NRRL-B537, Listeria innocua 062 AST, or Listeria monocytogenes ATCC19115 by the well diffusion test using cell-free supernatants, adjusted to pH 6.0 to exclude inhibition by organic acids. Positive isolates were identified by partial sequencing of the 16s rDNA as Pediococcus acidilactici (four isolates), Enterococcus faecium (17 isolates), Lactobacillus plantarum (six isolates) and Lactobacillus fermentum (two isolates). RAPD-PCR discriminated seven groups with a 50% similarity and revealed the presence of the same isolates. The coding genes for the synthesis of plantaricin EF, plantaricin JK, plantaricin N, plantaricin NC8 and the inducing peptide plantaricin A were detected by PCR in L. plantarum. Similarly, enterocin P and pediocin PA-1 genes were amplified from Enterococcus and Pediococcus genomic DNA, respectively. Overall, co-culturing of bacteriocin producing Lactobacillus and Pediococcus strains with the dairy starter Lactococcus lactis IPLA947 did not interfere with milk acidification. Lactose consumption, acidification rate and production of lactic acid were unchanged. Nonetheless, higher levels of acetic acid, ethanol and succinic acid were detected depending on the strain. Our results demonstrate the diversity of bacteriocinogenic species in homemade Mexican cheeses which may be used as adjunct cultures to enhancing safety of this well-appreciated cheese while providing a richer range of metabolites.
ISSN:0890-5436
1532-4249
DOI:10.1080/08905436.2016.1198263