Loading…
A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment
A novel artificial intelligence approach of Bayesian Logistic Regression (BLR) and its ensembles [Random Subspace (RS), Adaboost (AB), Multiboost (MB) and Bagging] was introduced for landslide susceptibility mapping in a part of Kamyaran city in Kurdistan Province, Iran. A spatial database was gener...
Saved in:
Published in: | Geocarto international 2019-11, Vol.34 (13), p.1427-1457 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel artificial intelligence approach of Bayesian Logistic Regression (BLR) and its ensembles [Random Subspace (RS), Adaboost (AB), Multiboost (MB) and Bagging] was introduced for landslide susceptibility mapping in a part of Kamyaran city in Kurdistan Province, Iran. A spatial database was generated which includes a total of 60 landslide locations and a set of conditioning factors tested by the Information Gain Ratio technique. Performance of these models was evaluated using the area under the ROC curve (AUROC) and statistical index-based methods. Results showed that the hybrid ensemble models could significantly improve the performance of the base classifier of BLR (AUROC = 0.930). However, RS model (AUROC = 0.975) had the highest performance in comparison to other landslide ensemble models, followed by Bagging (AUROC = 0.972), MB (AUROC = 0.970) and AB (AUROC = 0.957) models, respectively. |
---|---|
ISSN: | 1010-6049 1752-0762 |
DOI: | 10.1080/10106049.2018.1499820 |