Loading…
Continuous dependence on data for bilocal difference equations
The continuous dependence on data is studied for a class of second order difference equations governed by a maximal monotone operator A in a Hilbert space. A nonhomogeneous term f appears in the equation and some bilocal boundary conditions a, b are added. One shows that the function which associate...
Saved in:
Published in: | Journal of difference equations and applications 2009-05, Vol.15 (5), p.511-527 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The continuous dependence on data is studied for a class of second order difference equations governed by a maximal monotone operator A in a Hilbert space. A nonhomogeneous term f appears in the equation and some bilocal boundary conditions a, b are added. One shows that the function which associates to {a, b, A, f} the solution of this boundary value problem is continuous in a specific sense. One uses the convergence of a sequence of operators in the sense of the resolvent. The problem studied here is the discrete variant of a problem from the continuous case. |
---|---|
ISSN: | 1023-6198 1563-5120 |
DOI: | 10.1080/10236190802192975 |