Loading…

Five-Axis Machining and Burnishing of Complex Parts for the Improvement of Surface Roughness

In this article, the ball burnishing is applied on sculptured surfaces, aiming at enhance surface roughness. Different strategies are possible for burnishing, the continuous burnishing (CB) which uses a five-axis interpolation of the machine tool, and the patch burnishing (PB) using a more simple 3 ...

Full description

Saved in:
Bibliographic Details
Published in:Materials and manufacturing processes 2011-08, Vol.26 (8), p.997-1003
Main Authors: López de Lacalle, Luis N., Rodríguez, A., Lamikiz, A., Celaya, A., Alberdi, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, the ball burnishing is applied on sculptured surfaces, aiming at enhance surface roughness. Different strategies are possible for burnishing, the continuous burnishing (CB) which uses a five-axis interpolation of the machine tool, and the patch burnishing (PB) using a more simple 3 + 2 axis interpolation. Using both techniques complex parts are burnished and a big improvement in surface roughness achieved, but some differences between both approaches appear. Two parts have been previously machined in a five-axis milling center and finished using the ball burnishing approaches. The first one is a steel AISI 1045 with a hemisphere shape, whose geometry is simple. The second one is a steel DIN 1.2379 part (64 HRC), with more complex features. Surface quality was evaluated for both burnishing approaches, obtaining significant improvements on surface roughness and hardness. The main general conclusion is that ball burnishing reduces roughness without penalizing the manufacturing time or surface integrity and, therefore, is suitable for complex surfaces.
ISSN:1042-6914
1532-2475
DOI:10.1080/10426914.2010.529589