Loading…

Constructing a Laplacian on the Diamond Fractal

Kigami has shown how to construct Laplacians on certain selfsimilar fractals, first for the Sierpiriski gasket and then for the class of postcritically finite (pcf) fractals, subject to the solution of certain algebraic equations. It is desirable to extend this method to as large a class of fractals...

Full description

Saved in:
Bibliographic Details
Published in:Experimental mathematics 2001-01, Vol.10 (3), p.437-448
Main Authors: Kigami, Jun, Strichartz, Robert S., Walker, Katharine C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Kigami has shown how to construct Laplacians on certain selfsimilar fractals, first for the Sierpiriski gasket and then for the class of postcritically finite (pcf) fractals, subject to the solution of certain algebraic equations. It is desirable to extend this method to as large a class of fractals as possible, so in this paper we examine a specific example that exhibits features associated with finite ramification, but which does not fall into the class of pcf fractals. We show by a method of deconstruction that this fractal is a member of a family of three fractals for which the pcf condition holds in a generalized sense. We then study the algebraic equations whose solution is required for the actual construction of the Laplacian. We obtain experimental evidence for the existence and uniqueness of solutions. This experimental work uncovers two symmetries that were not initially apparent, only one of which has a natural explanation. By exploiting the symmetries, we give a nonconstructive proof of existence.
ISSN:1058-6458
1944-950X
DOI:10.1080/10586458.2001.10504461