Loading…
The Tammes Problem for N = 14
The Tammes problem is to find the arrangement of N points on a unit sphere which maximizes the minimum distance between any two points. This problem is presently solved for several values of N, namely for N = 3, 4, 6, 12 by L. Fejes Tóth (1943); for N = 5, 7, 8, 9 by Schütte and van der Waerden (195...
Saved in:
Published in: | Experimental mathematics 2015-10, Vol.24 (4), p.460-468 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Tammes problem is to find the arrangement of N points on a unit sphere which maximizes the minimum distance between any two points. This problem is presently solved for several values of N, namely for N = 3, 4, 6, 12 by L. Fejes Tóth (1943); for N = 5, 7, 8, 9 by Schütte and van der Waerden (1951); for N = 10, 11 by Danzer (1963); and for N = 24 by Robinson (1961). Recently, we solved the Tammes problem for N = 13. The optimal configuration of 14 points was conjectured more than 60 years ago. In this article, we give a solution for this long-standing open problem in geometry. Our computer-assisted proof relies on an enumeration of the irreducible contact graphs. |
---|---|
ISSN: | 1058-6458 1944-950X |
DOI: | 10.1080/10586458.2015.1022842 |