Loading…

Annealed Importance Sampling Reversible Jump MCMC Algorithms

We develop a methodology to efficiently implement the reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms of Green, applicable for example to model selection inference in a Bayesian framework, which builds on the "dragging fast variables" ideas of Neal. We call such algorithms an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics 2013-09, Vol.22 (3), p.623-648
Main Authors: Karagiannis, Georgios, Andrieu, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We develop a methodology to efficiently implement the reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms of Green, applicable for example to model selection inference in a Bayesian framework, which builds on the "dragging fast variables" ideas of Neal. We call such algorithms annealed importance sampling reversible jump (aisRJ). The proposed procedures can be thought of as being exact approximations of idealized RJ algorithms which in a model selection problem would sample the model labels only, but cannot be implemented. Central to the methodology is the idea of bridging different models with fictitious intermediate models, whose role is to introduce smooth intermodel transitions and, as we shall see, improve performance. Efficiency of the resulting algorithms is demonstrated on two standard model selection problems and we show that despite the additional computational effort incurred, the approach can be highly competitive computationally. Supplementary materials for the article are available online.
ISSN:1061-8600
1537-2715
DOI:10.1080/10618600.2013.805651