Loading…

Bayesian Function-on-Scalars Regression for High-Dimensional Data

We develop a fully Bayesian framework for function-on-scalars regression with many predictors. The functional data response is modeled nonparametrically using unknown basis functions, which produces a flexible and data-adaptive functional basis. We incorporate shrinkage priors that effectively remov...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics 2020-07, Vol.29 (3), p.629-638
Main Authors: Kowal, Daniel R., Bourgeois, Daniel C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We develop a fully Bayesian framework for function-on-scalars regression with many predictors. The functional data response is modeled nonparametrically using unknown basis functions, which produces a flexible and data-adaptive functional basis. We incorporate shrinkage priors that effectively remove unimportant scalar covariates from the model and reduce sensitivity to the number of (unknown) basis functions. For variable selection in functional regression, we propose a decision theoretical posterior summarization technique, which identifies a subset of covariates that retains nearly the predictive accuracy of the full model. Our approach is broadly applicable for Bayesian functional regression models, and unlike existing methods provides joint rather than marginal selection of important predictor variables. Computationally scalable posterior inference is achieved using a Gibbs sampler with linear time complexity in the number of predictors. The resulting algorithm is empirically faster than existing frequentist and Bayesian techniques, and provides joint estimation of model parameters, prediction and imputation of functional trajectories, and uncertainty quantification via the posterior distribution. A simulation study demonstrates improvements in estimation accuracy, uncertainty quantification, and variable selection relative to existing alternatives. The methodology is applied to actigraphy data to investigate the association between intraday physical activity and responses to a sleep questionnaire. Supplementary materials for this article are available online.
ISSN:1061-8600
1537-2715
DOI:10.1080/10618600.2019.1710837