Loading…
Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach
Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this st...
Saved in:
Published in: | Petroleum science and technology 2019-08, Vol.37 (16), p.1861-1867 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3 |
container_end_page | 1867 |
container_issue | 16 |
container_start_page | 1861 |
container_title | Petroleum science and technology |
container_volume | 37 |
creator | Kardani, Mohammad Navid Baghban, Alireza Hamzehie, Mohammad Ehsan Baghban, Mohammad |
description | Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this study was to predict the amount of asphaltene precipitation as a function of temperature, dilution ratio, and molecular weight of different n-alkanes utilizing radial basis function artificial neural network (RBF-ANN). Additionally, this model has been compared with previous correlations, and its great accuracy was proved to predict the precipitated asphaltene. The values of R-squared and mean squared error obtained were 0.998 and 0.007, respectively. The efforts confirmed brilliant forecasting skill of RBF-ANN for the approximation of the precipitated asphaltene as a function of temperature, dilution ratio, and molecular weight of different n-alkanes. |
doi_str_mv | 10.1080/10916466.2017.1289222 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10916466_2017_1289222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237763817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhYMoWKs_QQi4Tp1H55GdtVgVpIroeridh5mSZuJMqtRfb0Lr1tW9i--cA1-WXWI0wUiia4xKzKecTwjCYoKJLAkhR9kIM0oKMmXlcf_3TDFAp9lZSmuEcCkwH2XLlwqSzVe2gi8fYr4Jxta--ciDyyG1FdSdbWzeRqt96zvofGjybedr_zNQr7eLYrZc5tC2MYCuzrMTB3WyF4c7zt4Xd2_zh-Lp-f5xPnsqNKWyK0BoJ8uSMM0F58AEk0RbMqXAQLIVJ5YaRiwYawV1VJbGEC6kRQys48bQcXa17-1nP7c2dWodtrHpJxUhVAhOJRY9xfaUjiGlaJ1qo99A3CmM1KBO_alTgzp1UNfnbvY537gQN_AdYm1UB7s6RBeh0T4p-n_FLxOVdWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237763817</pqid></control><display><type>article</type><title>Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach</title><source>Taylor and Francis Science and Technology Collection</source><creator>Kardani, Mohammad Navid ; Baghban, Alireza ; Hamzehie, Mohammad Ehsan ; Baghban, Mohammad</creator><creatorcontrib>Kardani, Mohammad Navid ; Baghban, Alireza ; Hamzehie, Mohammad Ehsan ; Baghban, Mohammad</creatorcontrib><description>Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this study was to predict the amount of asphaltene precipitation as a function of temperature, dilution ratio, and molecular weight of different n-alkanes utilizing radial basis function artificial neural network (RBF-ANN). Additionally, this model has been compared with previous correlations, and its great accuracy was proved to predict the precipitated asphaltene. The values of R-squared and mean squared error obtained were 0.998 and 0.007, respectively. The efforts confirmed brilliant forecasting skill of RBF-ANN for the approximation of the precipitated asphaltene as a function of temperature, dilution ratio, and molecular weight of different n-alkanes.</description><identifier>ISSN: 1091-6466</identifier><identifier>EISSN: 1532-2459</identifier><identifier>DOI: 10.1080/10916466.2017.1289222</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Alkanes ; Artificial neural networks ; asphaltene ; Asphaltenes ; Basis functions ; Dilution ; dilution ratio ; heavy n-alkane ; Molecular weight ; Radial basis function ; RBF-ANN ; Refineries ; temperature</subject><ispartof>Petroleum science and technology, 2019-08, Vol.37 (16), p.1861-1867</ispartof><rights>2019 Taylor & Francis Group, LLC 2019</rights><rights>2019 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3</citedby><cites>FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Kardani, Mohammad Navid</creatorcontrib><creatorcontrib>Baghban, Alireza</creatorcontrib><creatorcontrib>Hamzehie, Mohammad Ehsan</creatorcontrib><creatorcontrib>Baghban, Mohammad</creatorcontrib><title>Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach</title><title>Petroleum science and technology</title><description>Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this study was to predict the amount of asphaltene precipitation as a function of temperature, dilution ratio, and molecular weight of different n-alkanes utilizing radial basis function artificial neural network (RBF-ANN). Additionally, this model has been compared with previous correlations, and its great accuracy was proved to predict the precipitated asphaltene. The values of R-squared and mean squared error obtained were 0.998 and 0.007, respectively. The efforts confirmed brilliant forecasting skill of RBF-ANN for the approximation of the precipitated asphaltene as a function of temperature, dilution ratio, and molecular weight of different n-alkanes.</description><subject>Alkanes</subject><subject>Artificial neural networks</subject><subject>asphaltene</subject><subject>Asphaltenes</subject><subject>Basis functions</subject><subject>Dilution</subject><subject>dilution ratio</subject><subject>heavy n-alkane</subject><subject>Molecular weight</subject><subject>Radial basis function</subject><subject>RBF-ANN</subject><subject>Refineries</subject><subject>temperature</subject><issn>1091-6466</issn><issn>1532-2459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhYMoWKs_QQi4Tp1H55GdtVgVpIroeridh5mSZuJMqtRfb0Lr1tW9i--cA1-WXWI0wUiia4xKzKecTwjCYoKJLAkhR9kIM0oKMmXlcf_3TDFAp9lZSmuEcCkwH2XLlwqSzVe2gi8fYr4Jxta--ciDyyG1FdSdbWzeRqt96zvofGjybedr_zNQr7eLYrZc5tC2MYCuzrMTB3WyF4c7zt4Xd2_zh-Lp-f5xPnsqNKWyK0BoJ8uSMM0F58AEk0RbMqXAQLIVJ5YaRiwYawV1VJbGEC6kRQys48bQcXa17-1nP7c2dWodtrHpJxUhVAhOJRY9xfaUjiGlaJ1qo99A3CmM1KBO_alTgzp1UNfnbvY537gQN_AdYm1UB7s6RBeh0T4p-n_FLxOVdWw</recordid><startdate>20190818</startdate><enddate>20190818</enddate><creator>Kardani, Mohammad Navid</creator><creator>Baghban, Alireza</creator><creator>Hamzehie, Mohammad Ehsan</creator><creator>Baghban, Mohammad</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190818</creationdate><title>Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach</title><author>Kardani, Mohammad Navid ; Baghban, Alireza ; Hamzehie, Mohammad Ehsan ; Baghban, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkanes</topic><topic>Artificial neural networks</topic><topic>asphaltene</topic><topic>Asphaltenes</topic><topic>Basis functions</topic><topic>Dilution</topic><topic>dilution ratio</topic><topic>heavy n-alkane</topic><topic>Molecular weight</topic><topic>Radial basis function</topic><topic>RBF-ANN</topic><topic>Refineries</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kardani, Mohammad Navid</creatorcontrib><creatorcontrib>Baghban, Alireza</creatorcontrib><creatorcontrib>Hamzehie, Mohammad Ehsan</creatorcontrib><creatorcontrib>Baghban, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Petroleum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kardani, Mohammad Navid</au><au>Baghban, Alireza</au><au>Hamzehie, Mohammad Ehsan</au><au>Baghban, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach</atitle><jtitle>Petroleum science and technology</jtitle><date>2019-08-18</date><risdate>2019</risdate><volume>37</volume><issue>16</issue><spage>1861</spage><epage>1867</epage><pages>1861-1867</pages><issn>1091-6466</issn><eissn>1532-2459</eissn><abstract>Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this study was to predict the amount of asphaltene precipitation as a function of temperature, dilution ratio, and molecular weight of different n-alkanes utilizing radial basis function artificial neural network (RBF-ANN). Additionally, this model has been compared with previous correlations, and its great accuracy was proved to predict the precipitated asphaltene. The values of R-squared and mean squared error obtained were 0.998 and 0.007, respectively. The efforts confirmed brilliant forecasting skill of RBF-ANN for the approximation of the precipitated asphaltene as a function of temperature, dilution ratio, and molecular weight of different n-alkanes.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/10916466.2017.1289222</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1091-6466 |
ispartof | Petroleum science and technology, 2019-08, Vol.37 (16), p.1861-1867 |
issn | 1091-6466 1532-2459 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10916466_2017_1289222 |
source | Taylor and Francis Science and Technology Collection |
subjects | Alkanes Artificial neural networks asphaltene Asphaltenes Basis functions Dilution dilution ratio heavy n-alkane Molecular weight Radial basis function RBF-ANN Refineries temperature |
title | Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20behavior%20modeling%20of%20asphaltene%20precipitation%20utilizing%20RBF-ANN%20approach&rft.jtitle=Petroleum%20science%20and%20technology&rft.au=Kardani,%20Mohammad%20Navid&rft.date=2019-08-18&rft.volume=37&rft.issue=16&rft.spage=1861&rft.epage=1867&rft.pages=1861-1867&rft.issn=1091-6466&rft.eissn=1532-2459&rft_id=info:doi/10.1080/10916466.2017.1289222&rft_dat=%3Cproquest_cross%3E2237763817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2237763817&rft_id=info:pmid/&rfr_iscdi=true |