Loading…

Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach

Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this st...

Full description

Saved in:
Bibliographic Details
Published in:Petroleum science and technology 2019-08, Vol.37 (16), p.1861-1867
Main Authors: Kardani, Mohammad Navid, Baghban, Alireza, Hamzehie, Mohammad Ehsan, Baghban, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3
cites cdi_FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3
container_end_page 1867
container_issue 16
container_start_page 1861
container_title Petroleum science and technology
container_volume 37
creator Kardani, Mohammad Navid
Baghban, Alireza
Hamzehie, Mohammad Ehsan
Baghban, Mohammad
description Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this study was to predict the amount of asphaltene precipitation as a function of temperature, dilution ratio, and molecular weight of different n-alkanes utilizing radial basis function artificial neural network (RBF-ANN). Additionally, this model has been compared with previous correlations, and its great accuracy was proved to predict the precipitated asphaltene. The values of R-squared and mean squared error obtained were 0.998 and 0.007, respectively. The efforts confirmed brilliant forecasting skill of RBF-ANN for the approximation of the precipitated asphaltene as a function of temperature, dilution ratio, and molecular weight of different n-alkanes.
doi_str_mv 10.1080/10916466.2017.1289222
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10916466_2017_1289222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237763817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhYMoWKs_QQi4Tp1H55GdtVgVpIroeridh5mSZuJMqtRfb0Lr1tW9i--cA1-WXWI0wUiia4xKzKecTwjCYoKJLAkhR9kIM0oKMmXlcf_3TDFAp9lZSmuEcCkwH2XLlwqSzVe2gi8fYr4Jxta--ciDyyG1FdSdbWzeRqt96zvofGjybedr_zNQr7eLYrZc5tC2MYCuzrMTB3WyF4c7zt4Xd2_zh-Lp-f5xPnsqNKWyK0BoJ8uSMM0F58AEk0RbMqXAQLIVJ5YaRiwYawV1VJbGEC6kRQys48bQcXa17-1nP7c2dWodtrHpJxUhVAhOJRY9xfaUjiGlaJ1qo99A3CmM1KBO_alTgzp1UNfnbvY537gQN_AdYm1UB7s6RBeh0T4p-n_FLxOVdWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237763817</pqid></control><display><type>article</type><title>Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach</title><source>Taylor and Francis Science and Technology Collection</source><creator>Kardani, Mohammad Navid ; Baghban, Alireza ; Hamzehie, Mohammad Ehsan ; Baghban, Mohammad</creator><creatorcontrib>Kardani, Mohammad Navid ; Baghban, Alireza ; Hamzehie, Mohammad Ehsan ; Baghban, Mohammad</creatorcontrib><description>Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this study was to predict the amount of asphaltene precipitation as a function of temperature, dilution ratio, and molecular weight of different n-alkanes utilizing radial basis function artificial neural network (RBF-ANN). Additionally, this model has been compared with previous correlations, and its great accuracy was proved to predict the precipitated asphaltene. The values of R-squared and mean squared error obtained were 0.998 and 0.007, respectively. The efforts confirmed brilliant forecasting skill of RBF-ANN for the approximation of the precipitated asphaltene as a function of temperature, dilution ratio, and molecular weight of different n-alkanes.</description><identifier>ISSN: 1091-6466</identifier><identifier>EISSN: 1532-2459</identifier><identifier>DOI: 10.1080/10916466.2017.1289222</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Alkanes ; Artificial neural networks ; asphaltene ; Asphaltenes ; Basis functions ; Dilution ; dilution ratio ; heavy n-alkane ; Molecular weight ; Radial basis function ; RBF-ANN ; Refineries ; temperature</subject><ispartof>Petroleum science and technology, 2019-08, Vol.37 (16), p.1861-1867</ispartof><rights>2019 Taylor &amp; Francis Group, LLC 2019</rights><rights>2019 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3</citedby><cites>FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Kardani, Mohammad Navid</creatorcontrib><creatorcontrib>Baghban, Alireza</creatorcontrib><creatorcontrib>Hamzehie, Mohammad Ehsan</creatorcontrib><creatorcontrib>Baghban, Mohammad</creatorcontrib><title>Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach</title><title>Petroleum science and technology</title><description>Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this study was to predict the amount of asphaltene precipitation as a function of temperature, dilution ratio, and molecular weight of different n-alkanes utilizing radial basis function artificial neural network (RBF-ANN). Additionally, this model has been compared with previous correlations, and its great accuracy was proved to predict the precipitated asphaltene. The values of R-squared and mean squared error obtained were 0.998 and 0.007, respectively. The efforts confirmed brilliant forecasting skill of RBF-ANN for the approximation of the precipitated asphaltene as a function of temperature, dilution ratio, and molecular weight of different n-alkanes.</description><subject>Alkanes</subject><subject>Artificial neural networks</subject><subject>asphaltene</subject><subject>Asphaltenes</subject><subject>Basis functions</subject><subject>Dilution</subject><subject>dilution ratio</subject><subject>heavy n-alkane</subject><subject>Molecular weight</subject><subject>Radial basis function</subject><subject>RBF-ANN</subject><subject>Refineries</subject><subject>temperature</subject><issn>1091-6466</issn><issn>1532-2459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhYMoWKs_QQi4Tp1H55GdtVgVpIroeridh5mSZuJMqtRfb0Lr1tW9i--cA1-WXWI0wUiia4xKzKecTwjCYoKJLAkhR9kIM0oKMmXlcf_3TDFAp9lZSmuEcCkwH2XLlwqSzVe2gi8fYr4Jxta--ciDyyG1FdSdbWzeRqt96zvofGjybedr_zNQr7eLYrZc5tC2MYCuzrMTB3WyF4c7zt4Xd2_zh-Lp-f5xPnsqNKWyK0BoJ8uSMM0F58AEk0RbMqXAQLIVJ5YaRiwYawV1VJbGEC6kRQys48bQcXa17-1nP7c2dWodtrHpJxUhVAhOJRY9xfaUjiGlaJ1qo99A3CmM1KBO_alTgzp1UNfnbvY537gQN_AdYm1UB7s6RBeh0T4p-n_FLxOVdWw</recordid><startdate>20190818</startdate><enddate>20190818</enddate><creator>Kardani, Mohammad Navid</creator><creator>Baghban, Alireza</creator><creator>Hamzehie, Mohammad Ehsan</creator><creator>Baghban, Mohammad</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190818</creationdate><title>Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach</title><author>Kardani, Mohammad Navid ; Baghban, Alireza ; Hamzehie, Mohammad Ehsan ; Baghban, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkanes</topic><topic>Artificial neural networks</topic><topic>asphaltene</topic><topic>Asphaltenes</topic><topic>Basis functions</topic><topic>Dilution</topic><topic>dilution ratio</topic><topic>heavy n-alkane</topic><topic>Molecular weight</topic><topic>Radial basis function</topic><topic>RBF-ANN</topic><topic>Refineries</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kardani, Mohammad Navid</creatorcontrib><creatorcontrib>Baghban, Alireza</creatorcontrib><creatorcontrib>Hamzehie, Mohammad Ehsan</creatorcontrib><creatorcontrib>Baghban, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Petroleum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kardani, Mohammad Navid</au><au>Baghban, Alireza</au><au>Hamzehie, Mohammad Ehsan</au><au>Baghban, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach</atitle><jtitle>Petroleum science and technology</jtitle><date>2019-08-18</date><risdate>2019</risdate><volume>37</volume><issue>16</issue><spage>1861</spage><epage>1867</epage><pages>1861-1867</pages><issn>1091-6466</issn><eissn>1532-2459</eissn><abstract>Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this study was to predict the amount of asphaltene precipitation as a function of temperature, dilution ratio, and molecular weight of different n-alkanes utilizing radial basis function artificial neural network (RBF-ANN). Additionally, this model has been compared with previous correlations, and its great accuracy was proved to predict the precipitated asphaltene. The values of R-squared and mean squared error obtained were 0.998 and 0.007, respectively. The efforts confirmed brilliant forecasting skill of RBF-ANN for the approximation of the precipitated asphaltene as a function of temperature, dilution ratio, and molecular weight of different n-alkanes.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10916466.2017.1289222</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1091-6466
ispartof Petroleum science and technology, 2019-08, Vol.37 (16), p.1861-1867
issn 1091-6466
1532-2459
language eng
recordid cdi_crossref_primary_10_1080_10916466_2017_1289222
source Taylor and Francis Science and Technology Collection
subjects Alkanes
Artificial neural networks
asphaltene
Asphaltenes
Basis functions
Dilution
dilution ratio
heavy n-alkane
Molecular weight
Radial basis function
RBF-ANN
Refineries
temperature
title Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20behavior%20modeling%20of%20asphaltene%20precipitation%20utilizing%20RBF-ANN%20approach&rft.jtitle=Petroleum%20science%20and%20technology&rft.au=Kardani,%20Mohammad%20Navid&rft.date=2019-08-18&rft.volume=37&rft.issue=16&rft.spage=1861&rft.epage=1867&rft.pages=1861-1867&rft.issn=1091-6466&rft.eissn=1532-2459&rft_id=info:doi/10.1080/10916466.2017.1289222&rft_dat=%3Cproquest_cross%3E2237763817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-a7cf89925c6766a57582ce243a5a85b62e3d52eadee73f389dd2678e05aef6dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2237763817&rft_id=info:pmid/&rfr_iscdi=true