Loading…

Geostatistical space-time mapping of house prices using Bayesian maximum entropy

Mapping spatial processes at a small scale is a challenge when observed data are not abundant. The article examines the residential housing market in Fort Worth, Texas, and builds price indices at the inter- and intra-neighborhood levels. To accomplish our objectives, we initially model price variab...

Full description

Saved in:
Bibliographic Details
Published in:International journal of geographical information science : IJGIS 2016-12, Vol.30 (12), p.2339-2354
Main Authors: Hayunga, Darren K., Kolovos, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mapping spatial processes at a small scale is a challenge when observed data are not abundant. The article examines the residential housing market in Fort Worth, Texas, and builds price indices at the inter- and intra-neighborhood levels. To accomplish our objectives, we initially model price variability in the joint space-time continuum. We then use geostatistics to predict and map monthly housing prices across the area of interest over a period of 4 years. For this analysis, we introduce the Bayesian maximum entropy (BME) method into real estate research. We use BME because it rigorously integrates uncertain or secondary soft data, which are needed to build the price indices. The soft data in our analysis are property tax values, which are plentiful, publicly available, and highly correlated with transaction prices. The results demonstrate how the use of the soft data provides the ability to map house prices within a small areal unit such as a subdivision or neighborhood.
ISSN:1365-8816
1362-3087
1365-8824
DOI:10.1080/13658816.2016.1165820