Loading…
Automatic alignment of contemporary vector data and georeferenced historical maps using reinforcement learning
With large amounts of digital map archives becoming available, automatically extracting information from scanned historical maps is needed for many domains that require long-term historical geographic data. Convolutional Neural Networks (CNN) are powerful techniques that can be used for extracting l...
Saved in:
Published in: | International journal of geographical information science : IJGIS 2020-04, Vol.34 (4), p.824-849 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With large amounts of digital map archives becoming available, automatically extracting information from scanned historical maps is needed for many domains that require long-term historical geographic data. Convolutional Neural Networks (CNN) are powerful techniques that can be used for extracting locations of geographic features from scanned maps if sufficient representative training data are available. Existing spatial data can provide the approximate locations of corresponding geographic features in historical maps and thus be useful to annotate training data automatically. However, the feature representations, publication date, production scales, and spatial reference systems of contemporary vector data are typically very different from those of historical maps. Hence, such auxiliary data cannot be directly used for annotation of the precise locations of the features of interest in the scanned historical maps. This research introduces an automatic vector-to-raster alignment algorithm based on reinforcement learning to annotate precise locations of geographic features on scanned maps. This paper models the alignment problem using the reinforcement learning framework, which enables informed, efficient searches for matching features without pre-processing steps, such as extracting specific feature signatures (e.g. road intersections). The experimental results show that our algorithm can be applied to various features (roads, water lines, and railroads) and achieve high accuracy. |
---|---|
ISSN: | 1365-8816 1365-8824 1362-3087 |
DOI: | 10.1080/13658816.2019.1698742 |