Loading…
Themis-ml: A Fairness-Aware Machine Learning Interface for End-To-End Discrimination Discovery and Mitigation
As more industries integrate machine learning into socially sensitive decision processes like hiring, loan-approval, and parole-granting, we are at risk of perpetuating historical and contemporary socioeconomic disparities. This is a critical problem because on the one hand, organizations who use bu...
Saved in:
Published in: | Journal of technology in human services 2018-01, Vol.36 (1), p.15-30 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As more industries integrate machine learning into socially sensitive decision processes like hiring, loan-approval, and parole-granting, we are at risk of perpetuating historical and contemporary socioeconomic disparities. This is a critical problem because on the one hand, organizations who use but do not understand the discriminatory potential of such systems will facilitate the widening of social disparities under the assumption that algorithms are categorically objective. On the other hand, the responsible use of machine learning can help us measure, understand, and mitigate the implicit historical biases in socially sensitive data by expressing implicit decision-making mental models in terms of explicit statistical models. In this article we specify, implement, and evaluate a "fairness-aware" machine learning interface called themis-ml, which is intended for use by individual data scientists and engineers, academic research teams, or larger product teams who use machine learning in production systems. |
---|---|
ISSN: | 1522-8835 1522-8991 |
DOI: | 10.1080/15228835.2017.1416512 |