Loading…
Analysis of metallic and functionally graded beams using isogeometric approach and Carrera Unified Formulation
This paper investigates the bending and vibration characteristics of metallic and functionally graded (FG) beam structures. The weak form of governing equations and boundary conditions are derived using Carrera unified formulation (CUF). The isogeometric analysis (IGA) is employed to solve the stati...
Saved in:
Published in: | Mechanics of advanced materials and structures 2023-02, Vol.30 (4), p.894-911 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the bending and vibration characteristics of metallic and functionally graded (FG) beam structures. The weak form of governing equations and boundary conditions are derived using Carrera unified formulation (CUF). The isogeometric analysis (IGA) is employed to solve the static and free vibration problems. NURBS basis functions approximate the displacement field unknowns and material gradations in cross-section. In contrast, the axial displacements are evaluated by either NURBS or Lagrange basis functions. In this framework, the equations are extracted in the form of a fundamental nucleus, which allows the study of different beam theories in a constant formulation. Several numerical examples are presented and compared with results available in the literature to address the accuracy and effectiveness of the current approach. It is found that the present results are validated for different aspect ratios, boundary conditions, and material distribution with more accuracy and low computational cost. |
---|---|
ISSN: | 1537-6494 1537-6532 |
DOI: | 10.1080/15376494.2022.2028042 |