Loading…
Physical, Rheological and Mechanical Properties of Alkali Activated Hydrogels Based on Nanofibrillated Cellulose
Hydrogels are classified as a three-dimensional network system, capable of retaining large amounts of water while preserving their shape and dimensional stability. Due to their natural origin and biocompatibility with human tissue, cellulose nanofibrils are often considered to be promising candidate...
Saved in:
Published in: | Journal of natural fibers 2022-12, Vol.19 (17), p.16040-16052 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydrogels are classified as a three-dimensional network system, capable of retaining large amounts of water while preserving their shape and dimensional stability. Due to their natural origin and biocompatibility with human tissue, cellulose nanofibrils are often considered to be promising candidates for bioactive hydrogels preparation. For such applications, their responsiveness under different types of mechanical load, including multiple cyclic compressions, is of crucial importance. In the present study, cellulose nanofibril-based hydrogels were initiated though a simple alkali neutralization treatment. Structural, rheological and compressive features were investigated as a function of elevated NaOH concentration and physical gelling conditions. It was found that a sufficiently concentrated alkaline solution allows the formation of mechanically robust cellulose nanofibril hydrogels, which can be dried to the state of ultralight material, aerogel, of low density (0.057 g cm
−3
), superior porosity (96.2%), super water absorbant capacity (1200%), and exceptional shear and compressive load resilience with elasticity modulus of 9.3 kPa. These outstanding characteristics can be predominantly attributed to the polymorphic conversion of cellulose I to cellulose II, which results from the mercerization of cellulose nanofibrils and creates a stable and firm hydrogels texture. |
---|---|
ISSN: | 1544-0478 1544-046X |
DOI: | 10.1080/15440478.2022.2123879 |