Loading…
Feasible and eco-friendly removal of hexavalent chromium toxicant from aqueous solutions using chemically modified sugarcane bagasse cellulose
The hexavalent chromium (Cr(VI)) reported severe threat to the environment and public health as it is considered potentially mutagenic and carcinogenic. This communication demonstrates a chemical modification process of sugarcane bagasse cellulose for the removal of Cr(VI) from aqueous solutions. Ce...
Saved in:
Published in: | Toxin reviews 2021-10, Vol.40 (4), p.835-846 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hexavalent chromium (Cr(VI)) reported severe threat to the environment and public health as it is considered potentially mutagenic and carcinogenic. This communication demonstrates a chemical modification process of sugarcane bagasse cellulose for the removal of Cr(VI) from aqueous solutions. Cellulose was extracted from sugarcane bagasse followed by succination to form cellulose succinate (CS), which was then reacted with acetic anhydride to form cellulose succinic anhydrides (CSA). The latter was then reacted with triethylenetetramine (TETA) to form CS-TETA (CST). The prepared CST was characterized by Fourier transform infrared spectrometry (FTIR), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), and Brunauer-Emmett-Teller (BET) analyzer. The maximum removal efficiency of Cr(VI) by CST reached nearly 100% after 180 min, which was obtained at pH 1.0. The adsorption process fit well with the pseudo-second-order kinetic model, while the rate constant was 9.13 × 10
−3
g/mg min. The isothermal study showed that the results closely aligned with the Langmuir isotherm model and the maximum adsorption capacity was 12.4 mg/g. |
---|---|
ISSN: | 1556-9543 1556-9551 |
DOI: | 10.1080/15569543.2020.1790606 |