Loading…

Economic value of optical and X-ray CT scanning in bucking of Scots pine

In the Nordic countries, trees are typically bucked into logs using harvesters that measure only a two-dimensional diameter profile of the stem. Because the value of a log can vary significantly depending on its shape and internal defects, bucking decisions can in principle be improved by optical sc...

Full description

Saved in:
Bibliographic Details
Published in:Wood material science and engineering 2021-05, Vol.16 (3), p.178-187
Main Authors: Rummukainen, Hannu, Makkonen, Marika, Uusitalo, Jori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the Nordic countries, trees are typically bucked into logs using harvesters that measure only a two-dimensional diameter profile of the stem. Because the value of a log can vary significantly depending on its shape and internal defects, bucking decisions can in principle be improved by optical scanning of the three-dimensional stem shape, and detection of knots and other features inside the stem by X-ray computed tomography (CT). The objective of this study was to quantify how much the value recovery at a sawmill could be increased, if bucking decisions took advantage of additional measurement data and a sawing simulator to estimate log values. A simulation study on 1582 Scots pine stems was performed to compare bucking based on a two-dimensional diameter profile with bucking that maximises log value based on either optical scanning alone, or both optical and CT scanning. For log positioning, both the traditional "horns-down" position, and value-maximising rotation based on CT scanning were considered. The results show that bucking based on optical scanning alone can potentially increase the value of sawn timber by up to 5%, and CT scanning before bucking provides little additional value for a sawmill using a CT scanner to optimise log rotation.
ISSN:1748-0272
1748-0280
DOI:10.1080/17480272.2019.1672787