Loading…

A Bayesian network approach for predicting seismic liquefaction based on interpretive structural modeling

The Bayesian network (BN) is a type of graphical network based on probabilistic inference that has been gradually applied to assessment of seismic liquefaction potential. However, how to construct a robust BN remains underexplored in this field. This paper aims to present an efficient hybrid approac...

Full description

Saved in:
Bibliographic Details
Published in:Georisk 2015-07, Vol.9 (3), p.200-217
Main Authors: Hu, Ji-Lei, Tang, Xiao-Wei, Qiu, Jiang-Nan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a366t-fe06eab693ec55ae3a91193508aad65da18dd983976b69bb461a19898b360d533
cites cdi_FETCH-LOGICAL-a366t-fe06eab693ec55ae3a91193508aad65da18dd983976b69bb461a19898b360d533
container_end_page 217
container_issue 3
container_start_page 200
container_title Georisk
container_volume 9
creator Hu, Ji-Lei
Tang, Xiao-Wei
Qiu, Jiang-Nan
description The Bayesian network (BN) is a type of graphical network based on probabilistic inference that has been gradually applied to assessment of seismic liquefaction potential. However, how to construct a robust BN remains underexplored in this field. This paper aims to present an efficient hybrid approach combining domain knowledge and data to construct a BN that facilitates the integration of multiple factors and the quantification of uncertainties within a network model to assess seismic liquefaction. Initially, only using given domain knowledge, a naive network model can be constructed using interpretive structural modeling. Thereafter, some effective information about the naive model is provided to construct a robust model using structural learning of BN from historic data. Finally, the returning predictive results and the predictive results are compared to other methods including non-probabilistic and probabilistic models for seismic liquefaction using the metrics of the overall accuracy, the area under the curve of receiver operating characteristic, prediction, recall and F 1 score. The methodology proposed in this paper achieved better performance, and we discussed the power and value of the proposed approach at the end of this paper, which suggest that BN is a good alternative tool for seismic liquefaction prediction.
doi_str_mv 10.1080/17499518.2015.1076570
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17499518_2015_1076570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762108342</sourcerecordid><originalsourceid>FETCH-LOGICAL-a366t-fe06eab693ec55ae3a91193508aad65da18dd983976b69bb461a19898b360d533</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRsNT-CUKOXrYmmyab3KzFLyh40XOY3cxqcL9Mskr_e1NaPXqax-O9YeaXZZeMLhlV9JqVK60FU8uCMpGsUoqSnmSzvZ9rUcjTP83UebYIwVWUFooKrcpZ5tbkFnYYHPSkx_g9-A8C4-gHqN9JM3gyerSujq5_IwFd6FxNWvc5YQPJHHpSQUBLknB9RJ_S0X0hCdFPdZw8tKQbLLapfpGdNdAGXBznPHu9v3vZPObb54enzXqbA5cy5g1SiVBJzbEWApCDZkxzQRWAlcICU9ZqxXUpU6iqVpIB00qriktqBefz7OqwNz2R7gzRdC7U2LbQ4zAFw0pZJHJ8VaSoOERrP4TgsTGjdx34nWHU7OmaX7pmT9cc6abezaHn-oSog0SttSbCrh1846GvXTD8_xU_7UCDHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762108342</pqid></control><display><type>article</type><title>A Bayesian network approach for predicting seismic liquefaction based on interpretive structural modeling</title><source>Taylor and Francis Science and Technology Collection</source><creator>Hu, Ji-Lei ; Tang, Xiao-Wei ; Qiu, Jiang-Nan</creator><creatorcontrib>Hu, Ji-Lei ; Tang, Xiao-Wei ; Qiu, Jiang-Nan</creatorcontrib><description>The Bayesian network (BN) is a type of graphical network based on probabilistic inference that has been gradually applied to assessment of seismic liquefaction potential. However, how to construct a robust BN remains underexplored in this field. This paper aims to present an efficient hybrid approach combining domain knowledge and data to construct a BN that facilitates the integration of multiple factors and the quantification of uncertainties within a network model to assess seismic liquefaction. Initially, only using given domain knowledge, a naive network model can be constructed using interpretive structural modeling. Thereafter, some effective information about the naive model is provided to construct a robust model using structural learning of BN from historic data. Finally, the returning predictive results and the predictive results are compared to other methods including non-probabilistic and probabilistic models for seismic liquefaction using the metrics of the overall accuracy, the area under the curve of receiver operating characteristic, prediction, recall and F 1 score. The methodology proposed in this paper achieved better performance, and we discussed the power and value of the proposed approach at the end of this paper, which suggest that BN is a good alternative tool for seismic liquefaction prediction.</description><identifier>ISSN: 1749-9518</identifier><identifier>EISSN: 1749-9526</identifier><identifier>DOI: 10.1080/17499518.2015.1076570</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Assessments ; Bayesian analysis ; Bayesian network ; Construction ; domain knowledge ; Earthquake construction ; interpretive structural modeling ; Liquefaction ; Mathematical models ; Networks ; seismic liquefaction potential ; structure learning</subject><ispartof>Georisk, 2015-07, Vol.9 (3), p.200-217</ispartof><rights>2015 Taylor &amp; Francis 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a366t-fe06eab693ec55ae3a91193508aad65da18dd983976b69bb461a19898b360d533</citedby><cites>FETCH-LOGICAL-a366t-fe06eab693ec55ae3a91193508aad65da18dd983976b69bb461a19898b360d533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hu, Ji-Lei</creatorcontrib><creatorcontrib>Tang, Xiao-Wei</creatorcontrib><creatorcontrib>Qiu, Jiang-Nan</creatorcontrib><title>A Bayesian network approach for predicting seismic liquefaction based on interpretive structural modeling</title><title>Georisk</title><description>The Bayesian network (BN) is a type of graphical network based on probabilistic inference that has been gradually applied to assessment of seismic liquefaction potential. However, how to construct a robust BN remains underexplored in this field. This paper aims to present an efficient hybrid approach combining domain knowledge and data to construct a BN that facilitates the integration of multiple factors and the quantification of uncertainties within a network model to assess seismic liquefaction. Initially, only using given domain knowledge, a naive network model can be constructed using interpretive structural modeling. Thereafter, some effective information about the naive model is provided to construct a robust model using structural learning of BN from historic data. Finally, the returning predictive results and the predictive results are compared to other methods including non-probabilistic and probabilistic models for seismic liquefaction using the metrics of the overall accuracy, the area under the curve of receiver operating characteristic, prediction, recall and F 1 score. The methodology proposed in this paper achieved better performance, and we discussed the power and value of the proposed approach at the end of this paper, which suggest that BN is a good alternative tool for seismic liquefaction prediction.</description><subject>Assessments</subject><subject>Bayesian analysis</subject><subject>Bayesian network</subject><subject>Construction</subject><subject>domain knowledge</subject><subject>Earthquake construction</subject><subject>interpretive structural modeling</subject><subject>Liquefaction</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>seismic liquefaction potential</subject><subject>structure learning</subject><issn>1749-9518</issn><issn>1749-9526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxRdRsNT-CUKOXrYmmyab3KzFLyh40XOY3cxqcL9Mskr_e1NaPXqax-O9YeaXZZeMLhlV9JqVK60FU8uCMpGsUoqSnmSzvZ9rUcjTP83UebYIwVWUFooKrcpZ5tbkFnYYHPSkx_g9-A8C4-gHqN9JM3gyerSujq5_IwFd6FxNWvc5YQPJHHpSQUBLknB9RJ_S0X0hCdFPdZw8tKQbLLapfpGdNdAGXBznPHu9v3vZPObb54enzXqbA5cy5g1SiVBJzbEWApCDZkxzQRWAlcICU9ZqxXUpU6iqVpIB00qriktqBefz7OqwNz2R7gzRdC7U2LbQ4zAFw0pZJHJ8VaSoOERrP4TgsTGjdx34nWHU7OmaX7pmT9cc6abezaHn-oSog0SttSbCrh1846GvXTD8_xU_7UCDHw</recordid><startdate>20150703</startdate><enddate>20150703</enddate><creator>Hu, Ji-Lei</creator><creator>Tang, Xiao-Wei</creator><creator>Qiu, Jiang-Nan</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150703</creationdate><title>A Bayesian network approach for predicting seismic liquefaction based on interpretive structural modeling</title><author>Hu, Ji-Lei ; Tang, Xiao-Wei ; Qiu, Jiang-Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a366t-fe06eab693ec55ae3a91193508aad65da18dd983976b69bb461a19898b360d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assessments</topic><topic>Bayesian analysis</topic><topic>Bayesian network</topic><topic>Construction</topic><topic>domain knowledge</topic><topic>Earthquake construction</topic><topic>interpretive structural modeling</topic><topic>Liquefaction</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>seismic liquefaction potential</topic><topic>structure learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Ji-Lei</creatorcontrib><creatorcontrib>Tang, Xiao-Wei</creatorcontrib><creatorcontrib>Qiu, Jiang-Nan</creatorcontrib><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Georisk</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Ji-Lei</au><au>Tang, Xiao-Wei</au><au>Qiu, Jiang-Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian network approach for predicting seismic liquefaction based on interpretive structural modeling</atitle><jtitle>Georisk</jtitle><date>2015-07-03</date><risdate>2015</risdate><volume>9</volume><issue>3</issue><spage>200</spage><epage>217</epage><pages>200-217</pages><issn>1749-9518</issn><eissn>1749-9526</eissn><abstract>The Bayesian network (BN) is a type of graphical network based on probabilistic inference that has been gradually applied to assessment of seismic liquefaction potential. However, how to construct a robust BN remains underexplored in this field. This paper aims to present an efficient hybrid approach combining domain knowledge and data to construct a BN that facilitates the integration of multiple factors and the quantification of uncertainties within a network model to assess seismic liquefaction. Initially, only using given domain knowledge, a naive network model can be constructed using interpretive structural modeling. Thereafter, some effective information about the naive model is provided to construct a robust model using structural learning of BN from historic data. Finally, the returning predictive results and the predictive results are compared to other methods including non-probabilistic and probabilistic models for seismic liquefaction using the metrics of the overall accuracy, the area under the curve of receiver operating characteristic, prediction, recall and F 1 score. The methodology proposed in this paper achieved better performance, and we discussed the power and value of the proposed approach at the end of this paper, which suggest that BN is a good alternative tool for seismic liquefaction prediction.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/17499518.2015.1076570</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1749-9518
ispartof Georisk, 2015-07, Vol.9 (3), p.200-217
issn 1749-9518
1749-9526
language eng
recordid cdi_crossref_primary_10_1080_17499518_2015_1076570
source Taylor and Francis Science and Technology Collection
subjects Assessments
Bayesian analysis
Bayesian network
Construction
domain knowledge
Earthquake construction
interpretive structural modeling
Liquefaction
Mathematical models
Networks
seismic liquefaction potential
structure learning
title A Bayesian network approach for predicting seismic liquefaction based on interpretive structural modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20network%20approach%20for%20predicting%20seismic%20liquefaction%20based%20on%20interpretive%20structural%20modeling&rft.jtitle=Georisk&rft.au=Hu,%20Ji-Lei&rft.date=2015-07-03&rft.volume=9&rft.issue=3&rft.spage=200&rft.epage=217&rft.pages=200-217&rft.issn=1749-9518&rft.eissn=1749-9526&rft_id=info:doi/10.1080/17499518.2015.1076570&rft_dat=%3Cproquest_cross%3E1762108342%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a366t-fe06eab693ec55ae3a91193508aad65da18dd983976b69bb461a19898b360d533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762108342&rft_id=info:pmid/&rfr_iscdi=true