Loading…

Marine aquaculture mapping using GF-1 WFV satellite images and full resolution cascade convolutional neural network

Growing demand for seafood and reduced fishery harvests have raised intensive farming of marine aquaculture in coastal regions, which may cause severe coastal water problems without adequate environmental management. Effective mapping of mariculture areas is essential for the protection of coastal e...

Full description

Saved in:
Bibliographic Details
Published in:International journal of digital earth 2022-12, Vol.15 (1), p.2047-2060
Main Authors: Fu, Yongyong, You, Shucheng, Zhang, Shujuan, Cao, Kun, Zhang, Jianhua, Wang, Ping, Bi, Xu, Gao, Feng, Li, Fangzhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Growing demand for seafood and reduced fishery harvests have raised intensive farming of marine aquaculture in coastal regions, which may cause severe coastal water problems without adequate environmental management. Effective mapping of mariculture areas is essential for the protection of coastal environments. However, due to the limited spatial coverage and complex structures, it is still challenging for traditional methods to accurately extract mariculture areas from medium spatial resolution (MSR) images. To solve this problem, we propose to use the full resolution cascade convolutional neural network (FRCNet), which maintains effective features over the whole training process, to identify mariculture areas from MSR images. Specifically, the FRCNet uses a sequential full resolution neural network as the first-level subnetwork, and gradually aggregates higher-level subnetworks in a cascade way. Meanwhile, we perform a repeated fusion strategy so that features can receive information from different subnetworks simultaneously, leading to rich and representative features. As a result, FRCNet can effectively recognize different kinds of mariculture areas from MSR images. Results show that FRCNet obtained better performance than other classical and recently proposed methods. Our developed methods can provide valuable datasets for large-scale and intelligent modeling of the marine aquaculture management and coastal zone planning.
ISSN:1753-8947
1753-8955
DOI:10.1080/17538947.2022.2133184