Loading…
Optimal burn-in policies for multiple dependent degradation processes
Many complex engineering devices experience multiple dependent degradation processes. For each degradation process, there may exist substantial unit-to-unit heterogeneity. In this article, we describe the dependence structure among multiple dependent degradation processes using copulas and model uni...
Saved in:
Published in: | IIE transactions 2020-11, Vol.53 (11), p.1281-1293 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many complex engineering devices experience multiple dependent degradation processes. For each degradation process, there may exist substantial unit-to-unit heterogeneity. In this article, we describe the dependence structure among multiple dependent degradation processes using copulas and model unit-level heterogeneity as random effects. A two-stage estimation method is developed for statistical inference of multiple dependent degradation processes with random effects. To reduce the heterogeneity, we propose two degradation-based burn-in models, one with a single screening point and the other with multiple screening points. At each screening point, a unit is scrapped if one or more degradation levels pass their respective burn-in thresholds. Efficient algorithms are devised to find optimal burn-in decisions. We illustrate the proposed models using experimental data from light-emitting diode lamps. Impacts of parameter uncertainties on optimal burn-in decisions are investigated. Our results show that ignoring multiple dependent degradation processes can cause inferior system performance, such as increased total costs. Moreover, a higher level of dependence among multiple degradation processes often leads to longer burn-in time and higher burn-in thresholds for the two burn-in models. For the multiple-screening-point model, a higher level of dependence can also result in fewer screening points. Our results also show that burn-in with multiple screening points can lead to potential cost savings. |
---|---|
ISSN: | 2472-5854 2472-5862 |
DOI: | 10.1080/24725854.2020.1841344 |