Loading…
Shear Photospheric Forcing and the Origin of Turbulence in Coronal Loops
We present a series of numerical simulations aimed at understanding the nature and origin of turbulence in coronal loops in the framework of the Parker model for coronal heating. A coronal loop is studied via reduced magnetohydrodynamic (MHD) simulations in Cartesian geometry. A uniform and strong m...
Saved in:
Published in: | The Astrophysical journal 2010-10, Vol.722 (1), p.65-78 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a series of numerical simulations aimed at understanding the nature and origin of turbulence in coronal loops in the framework of the Parker model for coronal heating. A coronal loop is studied via reduced magnetohydrodynamic (MHD) simulations in Cartesian geometry. A uniform and strong magnetic field threads the volume between the two photospheric planes, where a velocity field in the form of a one-dimensional shear flow pattern is present. Initially, the magnetic field that develops in the coronal loop is a simple map of the photospheric velocity field. This initial configuration is unstable to a multiple tearing instability that develops islands with X and O points in the plane orthogonal to the axial field. Once the nonlinear stage sets in the system evolution is characterized by a regime of MHD turbulence dominated by magnetic energy. A well-developed power law in energy spectra is observed and the magnetic field never returns to the simple initial state mapping the photospheric flow. The formation of X and O points in the planes orthogonal to the axial field allows the continued and repeated formation and dissipation of small-scale current sheets where the plasma is heated. We conclude that the observed turbulent dynamics are not induced by the complexity of the pattern that the magnetic field-line footpoints follow but they rather stem from the inherent nonlinear nature of the system. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/722/1/65 |