Loading…
Smooth solutions for the dyadic model
We consider the dyadic model, which is a toy model to test issues of well-posedness and blow-up for the Navier-Stokes and Euler equations. We prove well-posedness of positive solutions of the viscous problem in the relevant scaling range which corresponds to Navier-Stokes. Likewise we prove well-pos...
Saved in:
Published in: | Nonlinearity 2011-11, Vol.24 (11), p.3083-3097 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the dyadic model, which is a toy model to test issues of well-posedness and blow-up for the Navier-Stokes and Euler equations. We prove well-posedness of positive solutions of the viscous problem in the relevant scaling range which corresponds to Navier-Stokes. Likewise we prove well-posedness for the inviscid problem (in a suitable regularity class) when the parameter corresponds to the strongest transport effect of the nonlinearity. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/0951-7715/24/11/004 |