Loading…

Predicting the lung compliance of mechanically ventilated patients via statistical modeling

To avoid ventilator associated lung injury (VALI) during mechanical ventilation, the ventilator is adjusted with reference to the volume distensibility or 'compliance' of the lung. For lung-protective ventilation, the lung should be inflated at its maximum compliance, i.e. when during insp...

Full description

Saved in:
Bibliographic Details
Published in:Physiological measurement 2012-03, Vol.33 (3), p.345-359
Main Authors: Ganzert, Steven, Kramer, Stefan, Guttmann, Josef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To avoid ventilator associated lung injury (VALI) during mechanical ventilation, the ventilator is adjusted with reference to the volume distensibility or 'compliance' of the lung. For lung-protective ventilation, the lung should be inflated at its maximum compliance, i.e. when during inspiration a maximal intrapulmonary volume change is achieved by a minimal change of pressure. To accomplish this, one of the main parameters is the adjusted positive end-expiratory pressure (PEEP). As changing the ventilator settings usually produces an effect on patient's lung mechanics with a considerable time delay, the prediction of the compliance change associated with a planned change of PEEP could assist the physician at the bedside. This study introduces a machine learning approach to predict the nonlinear lung compliance for the individual patient by Gaussian processes, a probabilistic modeling technique. Experiments are based on time series data obtained from patients suffering from acute respiratory distress syndrome (ARDS). With a high hit ratio of up to 93%, the learned models could predict whether an increase decrease of PEEP would lead to an increase decrease of the compliance. However, the prediction of the complete pressure-volume relation for an individual patient has to be improved. We conclude that the approach is well suitable for the given problem domain but that an individualized feature selection should be applied for a precise prediction of individual pressure-volume curves.
ISSN:0967-3334
1361-6579
DOI:10.1088/0967-3334/33/3/345