Loading…
Influence of a magnetic field on an extreme ultraviolet photon-induced plasma afterglow
Understanding extreme ultraviolet (EUV) photon-induced plasma dynamics is key to increasing the lifetime of the new generation of lithography machines. The plasma decay times were determined by means of a non-destructive microwave method, microwave cavity resonance spectroscopy, for unmagnetized and...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2021-10, Vol.54 (43), p.435205 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding extreme ultraviolet (EUV) photon-induced plasma dynamics is key to increasing the lifetime of the new generation of lithography machines. The plasma decay times were determined by means of a non-destructive microwave method, microwave cavity resonance spectroscopy, for unmagnetized and magnetized EUV photon-induced plasma afterglows with the argon pressure ranging from 0.002 to 10 Pa. As a result of an external magnet with a magnetic field strength of (57 ± 1) mT, the plasma decay times were extended by two orders of magnitude. Good agreement was found between these measured plasma decay times and four diffusion models, i.e. the ion acoustic, ambipolar, classical-collision, and Bohm’s diffusion model. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/ac1885 |