Loading…
Buckled carbon nanotube network thin-film fabricated using chemically swelled elastomer substrates
We report on the fabrication of buckled carbon nanotube thin-film networks (CNTN) that increases in conductivity with applied tactile pressure. When tactile pressure was applied, the buckled nanotubes collapsed and increased in interconnected density and as a result increased the thin-film conductiv...
Saved in:
Published in: | Nanotechnology 2019-07, Vol.30 (28), p.285501-285501 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the fabrication of buckled carbon nanotube thin-film networks (CNTN) that increases in conductivity with applied tactile pressure. When tactile pressure was applied, the buckled nanotubes collapsed and increased in interconnected density and as a result increased the thin-film conductivity. Unlike conventional methods using mechanically expanded elastomers, we utilize chemically swollen elastomers as the expanded substrate to transfer the CNTN. As the chemical evaporates, it compresses the CNTN causing the thin-film to buckle. The CNTN compression can be controlled by using organic solvents with differing elastomer absorption rates. Our method requires no mechanical instruments and shows in-plane multi-axial uniform strain for the entire substrate surface. Since the buckling was controlled chemically, the buckled CNTN can be produced reliably, furthering the possibility of its application as the active sensing material for highly sensitive tactile pressure sensors. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ab1363 |