Loading…

Height and morphology dependent heat dissipation of vertically aligned carbon nanotubes

The continuous miniaturization of electronic devices substantially increases their power density, and consequently, requires effective cooling of these components. Vertically aligned carbon nanotubes (VA-CNTs) constitute one of the most promising materials for use as a high-end heat dissipation elem...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2019-12, Vol.30 (50), p.505705-505705
Main Authors: Cohen, Yaniv, Reddy, Siva K, Ben-Shimon, Yahav, Ya'akobovitz, Assaf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The continuous miniaturization of electronic devices substantially increases their power density, and consequently, requires effective cooling of these components. Vertically aligned carbon nanotubes (VA-CNTs) constitute one of the most promising materials for use as a high-end heat dissipation element due to their high thermal conductivity and large surface area. However, the lack of a clear understanding of the heat transfer mechanisms of VA-CNTs has so far impeded their large-scale use as cooling elements. Our infrared micro-thermography analysis revealed that the heat dissipation of VA-CNTs is determined mainly by their height, such that the heat dissipation behavior of tall samples was dominated by convection from the carbon nanotube (CNT) sidewalls. The mechanism of heat transfer in short VA-CNTs, in contrast, was determined by their morphology. Short VA-CNTs with highly organized CNT formations or with low thermal conductance exhibited convective heat dissipation similar to that of tall VA-CNTs, while other short VA-CNTs exhibited heat transfer dominated by conduction along the CNTs. This study provides important guidelines regarding the parameters that can be changed to optimize the performances of VA-CNTs in thermal applications. These applications include cooling elements in electronic devices, where convection is required, or thermal interface materials, where conduction is required.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ab424e