Loading…

Automatic two-channel sleep staging using a predictor-corrector method

Objective: We developed and implemented two predictor-corrector methods for the classification of two-channel EEG data into sleep stages. Approach: The sequence of sleep stages over the night is modeled by a Markov chain of first and second order, resulting in an informative prior distribution for t...

Full description

Saved in:
Bibliographic Details
Published in:Physiological measurement 2018-01, Vol.39 (1), p.014006-014006
Main Authors: Riazy, S, Wendler, T, Pilz, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-12b85f2e69212c008e45deee699e9bada1dbefc8047452729faf9c52d88ba8e23
container_end_page 014006
container_issue 1
container_start_page 014006
container_title Physiological measurement
container_volume 39
creator Riazy, S
Wendler, T
Pilz, J
description Objective: We developed and implemented two predictor-corrector methods for the classification of two-channel EEG data into sleep stages. Approach: The sequence of sleep stages over the night is modeled by a Markov chain of first and second order, resulting in an informative prior distribution for the new state, given the distribution of the current one. The correction step is realized by applying a Bayes classifier using the (preprocessed) data and this prior. The preprocessing step consists of a frequency analysis, a log transformation and a dimensionality reduction via principal component analysis. Main results: The software automatically generates sleep profiles in which it detects wakeful phases as well as the different sleep stages with error rates of 16.5%-31.9% (n  =  8, healthy subjects, mean age  ±  SD: 39  ±  8.1 years, five females), where we compared our results to those of a certified polysomnographic technologist, who used a full polysomnograph and rated according to the American Academy of Sleep Medicine (AASM) criteria. Significance: The method presented relies on considerably less information than visual scoring and is done automatically. Furthermore, the error is comparable to visual scoring, where the inter-rater variability lies around 82%. Therefore, it has the potential to lessen the overheads associated with sleep diagnostics.
doi_str_mv 10.1088/1361-6579/aaa109
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6579_aaa109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975996955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-12b85f2e69212c008e45deee699e9bada1dbefc8047452729faf9c52d88ba8e23</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwM6GMDJjaTpzYY1W1gFSJBWbLcW7aVEkcbEeIf0-ilG4s96VzjnQ_hO4peaZEiCWNU4pTnsml1poSeYHm59MlmhOZZjiO42SGbrw_EkKpYPwazZhk8TDTOdqu-mAbHSoThW-LzUG3LdSRrwG6yAe9r9p91Pux6qhzUFQmWIeNdQ7GKWogHGxxi65KXXu4O_UF-txuPtavePf-8rZe7bBhQgZMWS54ySCVjDJDiICEFwDDLkHmutC0yKE0giRZwlnGZKlLaTgrhMi1ABYv0OOU2zn71YMPqqm8gbrWLdjeKyozLmUqOR-kZJIaZ713UKrOVY12P4oSNdJTIyo1olITvcHycErv8waKs-EP1yB4mgSV7dTR9q4dnv0_7xcEkXle</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975996955</pqid></control><display><type>article</type><title>Automatic two-channel sleep staging using a predictor-corrector method</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Riazy, S ; Wendler, T ; Pilz, J</creator><creatorcontrib>Riazy, S ; Wendler, T ; Pilz, J</creatorcontrib><description>Objective: We developed and implemented two predictor-corrector methods for the classification of two-channel EEG data into sleep stages. Approach: The sequence of sleep stages over the night is modeled by a Markov chain of first and second order, resulting in an informative prior distribution for the new state, given the distribution of the current one. The correction step is realized by applying a Bayes classifier using the (preprocessed) data and this prior. The preprocessing step consists of a frequency analysis, a log transformation and a dimensionality reduction via principal component analysis. Main results: The software automatically generates sleep profiles in which it detects wakeful phases as well as the different sleep stages with error rates of 16.5%-31.9% (n  =  8, healthy subjects, mean age  ±  SD: 39  ±  8.1 years, five females), where we compared our results to those of a certified polysomnographic technologist, who used a full polysomnograph and rated according to the American Academy of Sleep Medicine (AASM) criteria. Significance: The method presented relies on considerably less information than visual scoring and is done automatically. Furthermore, the error is comparable to visual scoring, where the inter-rater variability lies around 82%. Therefore, it has the potential to lessen the overheads associated with sleep diagnostics.</description><identifier>ISSN: 0967-3334</identifier><identifier>ISSN: 1361-6579</identifier><identifier>EISSN: 1361-6579</identifier><identifier>DOI: 10.1088/1361-6579/aaa109</identifier><identifier>PMID: 29231181</identifier><identifier>CODEN: PMEAE3</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adult ; automatic sleep-staging ; Automation ; Bayes Theorem ; Electroencephalography ; Female ; Humans ; Machine Learning ; Male ; Markov Chains ; Polysomnography ; predictor-corrector ; Signal Processing, Computer-Assisted ; Sleep Stages ; two-channel sleep measurements</subject><ispartof>Physiological measurement, 2018-01, Vol.39 (1), p.014006-014006</ispartof><rights>2018 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-12b85f2e69212c008e45deee699e9bada1dbefc8047452729faf9c52d88ba8e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29231181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riazy, S</creatorcontrib><creatorcontrib>Wendler, T</creatorcontrib><creatorcontrib>Pilz, J</creatorcontrib><title>Automatic two-channel sleep staging using a predictor-corrector method</title><title>Physiological measurement</title><addtitle>PM</addtitle><addtitle>Physiol. Meas</addtitle><description>Objective: We developed and implemented two predictor-corrector methods for the classification of two-channel EEG data into sleep stages. Approach: The sequence of sleep stages over the night is modeled by a Markov chain of first and second order, resulting in an informative prior distribution for the new state, given the distribution of the current one. The correction step is realized by applying a Bayes classifier using the (preprocessed) data and this prior. The preprocessing step consists of a frequency analysis, a log transformation and a dimensionality reduction via principal component analysis. Main results: The software automatically generates sleep profiles in which it detects wakeful phases as well as the different sleep stages with error rates of 16.5%-31.9% (n  =  8, healthy subjects, mean age  ±  SD: 39  ±  8.1 years, five females), where we compared our results to those of a certified polysomnographic technologist, who used a full polysomnograph and rated according to the American Academy of Sleep Medicine (AASM) criteria. Significance: The method presented relies on considerably less information than visual scoring and is done automatically. Furthermore, the error is comparable to visual scoring, where the inter-rater variability lies around 82%. Therefore, it has the potential to lessen the overheads associated with sleep diagnostics.</description><subject>Adult</subject><subject>automatic sleep-staging</subject><subject>Automation</subject><subject>Bayes Theorem</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Markov Chains</subject><subject>Polysomnography</subject><subject>predictor-corrector</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sleep Stages</subject><subject>two-channel sleep measurements</subject><issn>0967-3334</issn><issn>1361-6579</issn><issn>1361-6579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwM6GMDJjaTpzYY1W1gFSJBWbLcW7aVEkcbEeIf0-ilG4s96VzjnQ_hO4peaZEiCWNU4pTnsml1poSeYHm59MlmhOZZjiO42SGbrw_EkKpYPwazZhk8TDTOdqu-mAbHSoThW-LzUG3LdSRrwG6yAe9r9p91Pux6qhzUFQmWIeNdQ7GKWogHGxxi65KXXu4O_UF-txuPtavePf-8rZe7bBhQgZMWS54ySCVjDJDiICEFwDDLkHmutC0yKE0giRZwlnGZKlLaTgrhMi1ABYv0OOU2zn71YMPqqm8gbrWLdjeKyozLmUqOR-kZJIaZ713UKrOVY12P4oSNdJTIyo1olITvcHycErv8waKs-EP1yB4mgSV7dTR9q4dnv0_7xcEkXle</recordid><startdate>20180131</startdate><enddate>20180131</enddate><creator>Riazy, S</creator><creator>Wendler, T</creator><creator>Pilz, J</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180131</creationdate><title>Automatic two-channel sleep staging using a predictor-corrector method</title><author>Riazy, S ; Wendler, T ; Pilz, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-12b85f2e69212c008e45deee699e9bada1dbefc8047452729faf9c52d88ba8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>automatic sleep-staging</topic><topic>Automation</topic><topic>Bayes Theorem</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Markov Chains</topic><topic>Polysomnography</topic><topic>predictor-corrector</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sleep Stages</topic><topic>two-channel sleep measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riazy, S</creatorcontrib><creatorcontrib>Wendler, T</creatorcontrib><creatorcontrib>Pilz, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physiological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riazy, S</au><au>Wendler, T</au><au>Pilz, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic two-channel sleep staging using a predictor-corrector method</atitle><jtitle>Physiological measurement</jtitle><stitle>PM</stitle><addtitle>Physiol. Meas</addtitle><date>2018-01-31</date><risdate>2018</risdate><volume>39</volume><issue>1</issue><spage>014006</spage><epage>014006</epage><pages>014006-014006</pages><issn>0967-3334</issn><issn>1361-6579</issn><eissn>1361-6579</eissn><coden>PMEAE3</coden><abstract>Objective: We developed and implemented two predictor-corrector methods for the classification of two-channel EEG data into sleep stages. Approach: The sequence of sleep stages over the night is modeled by a Markov chain of first and second order, resulting in an informative prior distribution for the new state, given the distribution of the current one. The correction step is realized by applying a Bayes classifier using the (preprocessed) data and this prior. The preprocessing step consists of a frequency analysis, a log transformation and a dimensionality reduction via principal component analysis. Main results: The software automatically generates sleep profiles in which it detects wakeful phases as well as the different sleep stages with error rates of 16.5%-31.9% (n  =  8, healthy subjects, mean age  ±  SD: 39  ±  8.1 years, five females), where we compared our results to those of a certified polysomnographic technologist, who used a full polysomnograph and rated according to the American Academy of Sleep Medicine (AASM) criteria. Significance: The method presented relies on considerably less information than visual scoring and is done automatically. Furthermore, the error is comparable to visual scoring, where the inter-rater variability lies around 82%. Therefore, it has the potential to lessen the overheads associated with sleep diagnostics.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29231181</pmid><doi>10.1088/1361-6579/aaa109</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-3334
ispartof Physiological measurement, 2018-01, Vol.39 (1), p.014006-014006
issn 0967-3334
1361-6579
1361-6579
language eng
recordid cdi_crossref_primary_10_1088_1361_6579_aaa109
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Adult
automatic sleep-staging
Automation
Bayes Theorem
Electroencephalography
Female
Humans
Machine Learning
Male
Markov Chains
Polysomnography
predictor-corrector
Signal Processing, Computer-Assisted
Sleep Stages
two-channel sleep measurements
title Automatic two-channel sleep staging using a predictor-corrector method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-26T15%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20two-channel%20sleep%20staging%20using%20a%20predictor-corrector%20method&rft.jtitle=Physiological%20measurement&rft.au=Riazy,%20S&rft.date=2018-01-31&rft.volume=39&rft.issue=1&rft.spage=014006&rft.epage=014006&rft.pages=014006-014006&rft.issn=0967-3334&rft.eissn=1361-6579&rft.coden=PMEAE3&rft_id=info:doi/10.1088/1361-6579/aaa109&rft_dat=%3Cproquest_cross%3E1975996955%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-12b85f2e69212c008e45deee699e9bada1dbefc8047452729faf9c52d88ba8e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975996955&rft_id=info:pmid/29231181&rfr_iscdi=true