Loading…
Nature of the band gap of Ge:C alloys: insights from hybrid functional density functional theory calculations
Previous studies have shown that incorporating a small fraction of carbon (C) into germanium (Ge) leads to the lowest conduction state being at the Γ point in small supercell calculations, suggesting that C incorporation can turn Ge into a direct gap semiconductor. We use hybrid functional density f...
Saved in:
Published in: | Semiconductor science and technology 2019-07, Vol.34 (7), p.75007 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previous studies have shown that incorporating a small fraction of carbon (C) into germanium (Ge) leads to the lowest conduction state being at the Γ point in small supercell calculations, suggesting that C incorporation can turn Ge into a direct gap semiconductor. We use hybrid functional density functional theory calculations as a function of hydrostatic pressure to investigate the nature (Γ-, X- or L-like) of the lowest conduction states in Ge127C1 and Ge63C1 supercells. We find in both cases that the lowest conduction state, at Γ in the supercell, has primarily L-like character. Surprisingly, the Ge Γ state mixes with a higher-lying X state, but has almost no interaction with the L-like conduction band edge state. We conclude that the band gap of the here studied Ge:C systems is therefore only quasi-direct, limiting the benefit of this material system for optoelectronic device applications. |
---|---|
ISSN: | 0268-1242 1361-6641 |
DOI: | 10.1088/1361-6641/ab23a4 |