Loading…
Polygon relations and subadditivity of entropic measures for discrete and continuous multipartite entanglement
In a recent work by us Ge et al [Phys. Rev. A 110, L010402 (2024)], we have derived a series of polygon relations of bipartite entanglement measures that is useful to reveal entanglement properties of discrete, continuous, and even hybrid multipartite quantum systems. In this work, with the informat...
Saved in:
Published in: | Physica scripta 2024-09, Vol.99 (9), p.95113 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a recent work by us Ge et al [Phys. Rev. A 110, L010402 (2024)], we have derived a series of polygon relations of bipartite entanglement measures that is useful to reveal entanglement properties of discrete, continuous, and even hybrid multipartite quantum systems. In this work, with the information-theoretical measures of Rényi and Tsallis entropies, we study the relationship between the polygon relation and the subadditivity of entropy. In particular, the entropy-polygon relations are derived for pure multi-qubit states and then generalized to multi-mode Gaussian states, by utilizing the known results from the quantum marginal problem. Then the equivalence between the polygon relation and subadditivity is established, in the sense that for all discrete or continuous multipartite states, the polygon relation holds if and only if the underlying entropy is subadditive. As a byproduct, the subadditivity of Rényi and Tsallis entropies is proven for all bipartite Gaussian states. Finally, the difference between polygon relations and monogamy relations is clarified, and generalizations of our results are discussed. Our work provides a better understanding of the rich structure of multipartite states, and hence is expected to be helpful for the study of multipartite entanglement. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/ad6bcb |