Loading…
Quantum jointly assisted cloning of an unknown three-dimensional equatorial state
We present two schemes for perfectly cloning an unknown single-qutrit equatorial state with assistance from two and N state preparers, respectively. In the first scheme, the sender wishes to teleport an unknown single-qutrit equatorial state from two state preparers to a remote receiver, and then to...
Saved in:
Published in: | Laser physics 2018-02, Vol.28 (2), p.25201 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present two schemes for perfectly cloning an unknown single-qutrit equatorial state with assistance from two and N state preparers, respectively. In the first scheme, the sender wishes to teleport an unknown single-qutrit equatorial state from two state preparers to a remote receiver, and then to create a perfect copy of the unknown state at her location. The scheme consists of two stages. The first stage of the scheme requires the usual teleportation. In the second stage, to help the sender realize the quantum cloning, two state preparers perform single-qutrit projective measurements on their own qutrits from the sender, then the sender can acquire a perfect copy of the unknown state. It is shown that, only if the two state preparers collaborate with each other, the sender can create a copy of the unknown state by means of some appropriate unitary operations. In the second scheme, we generalized the jointly assisted cloning in the first scheme to the case of N state prepares. In the present schemes, the total probability of success for assisted cloning of a perfect copy of the unknown state can reach 1. |
---|---|
ISSN: | 1054-660X 1555-6611 |
DOI: | 10.1088/1555-6611/aa8bbe |