Loading…
Quasi-linearization and stability analysis of some self-dual, dark equations and a new dynamical system
We describe a class of self-dual dark nonlinear dynamical systems a priori allowing their quasi-linearization, whose integrability can be effectively studied by means of a geometrically based gradient-holonomic approach. A special case of the self-dual dynamical system, parametrically dependent on a...
Saved in:
Published in: | Communications in theoretical physics 2022-10, Vol.74 (10), p.105007 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe a class of self-dual dark nonlinear dynamical systems
a priori
allowing their quasi-linearization, whose integrability can be effectively studied by means of a geometrically based gradient-holonomic approach. A special case of the self-dual dynamical system, parametrically dependent on a functional variable is considered, and the related integrability condition is formulated. Using this integrability scheme, we study a new self-dual, dark nonlinear dynamical system on a smooth functional manifold, which models the interaction of atmospheric magneto-sonic Alfvén plasma waves. We prove that this dynamical system possesses a Lax representation that allows its full direct linearization and compatible Poisson structures. Moreover, for this self-dual nonlinear dynamical system we construct an infinite hierarchy of mutually commuting conservation laws and prove its complete integrability. |
---|---|
ISSN: | 0253-6102 1572-9494 |
DOI: | 10.1088/1572-9494/ac5d28 |