Loading…

Uphill anomalous transport in a deterministic system with speed-dependent friction coefficient

We investigate the transport of a deterministic Brownian particle theoretically, which moves in simple onedimensional, symmetric periodic potentials under the influence of both a time periodic and a static biasing force. The physical system employed contains a friction coefficient that is speed-depe...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2017, Vol.26 (1), p.139-144
Main Author: 郭伟 杜鲁春 刘真真 杨海 梅冬成
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the transport of a deterministic Brownian particle theoretically, which moves in simple onedimensional, symmetric periodic potentials under the influence of both a time periodic and a static biasing force. The physical system employed contains a friction coefficient that is speed-dependent. Within the tailored parameter regime, the absolute negative mobility, in which a particle can travel in the direction opposite to a constant applied force, is observed.This behavior is robust and can be maximized at two regimes upon variation of the characteristic factor of friction coefficient. Further analysis reveals that this uphill motion is subdiffusion in terms of localization(diffusion coefficient with the form D(t) -t-(-1) at long times). We also have observed the non-trivially anomalous subdiffusion which is significantly deviated from the localization; whereas most of the downhill motion evolves chaotically, with the normal diffusion.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/26/1/010502