Loading…

Some remarks on analytical solutions for a damped quantum parametric oscillator

The time-dependent Schrödinger equation for quadratic Hamiltonians has Gaussian wave packets as exact solutions. For the parametric oscillator with frequency ω(t), the width of these wave packets must be time-dependent. This time-dependence can be determined by solving a complex nonlinear Riccati eq...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2019-09, Vol.1275 (1), p.12033
Main Author: Schuch, Dieter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The time-dependent Schrödinger equation for quadratic Hamiltonians has Gaussian wave packets as exact solutions. For the parametric oscillator with frequency ω(t), the width of these wave packets must be time-dependent. This time-dependence can be determined by solving a complex nonlinear Riccati equation or an equivalent real nonlinear Ermakov equation. All quantum dynamical properties of the system can easily be constructed from these solutions, e.g., uncertainties of position and momentum, their correlations, ground state energies, etc. In addition, the link to the corresponding classical dynamics is supplied by linearizing the Riccati equation to a complex Newtonian equation, actually representing two equations of the same kind: one for the real and one for the imaginary part. If the solution of one part is known, the missing (linear independent) solution of the other can be obtained via a conservation law for the motion in the complex plane. Knowing these two solutions, the solution of the Ermakov equation can be determined immediately plus the explicit expressions for all the quantum dynamical properties mentioned above. The effect of a dissipative, linear velocity dependent friction force on these systems is discussed.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1275/1/012033