Loading…
Faster RooFitting: Automated parallel calculation of collaborative statistical models
RooFit [1,2] is the main statistical modeling and fitting package used to extract physical parameters from reduced particle collision data, e.g. the Higgs boson experiments at the LHC [3,4]. RooFit aims to separate particle physics model building and fitting (the users' goals) from their techni...
Saved in:
Published in: | Journal of physics. Conference series 2020-04, Vol.1525 (1), p.12041 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | RooFit [1,2] is the main statistical modeling and fitting package used to extract physical parameters from reduced particle collision data, e.g. the Higgs boson experiments at the LHC [3,4]. RooFit aims to separate particle physics model building and fitting (the users' goals) from their technical implementation and optimization in the back-end. In this paper, we outline our efforts to further optimize this back-end by automatically running parts of user models in parallel on multi-core machines. A major challenge is that RooFit allows users to define many different types of models, with different types of computational bottlenecks. Our automatic parallelization framework must then be flexible, while still reducing run-time by at least an order of magnitude, preferably more. We have performed extensive benchmarks and identified at least three bottlenecks that will benefit from parallelization. We designed a parallelization layer that allows us to parallelize existing classes with minimal effort, but with high performance and retaining as much of the existing class's interface as possible. The high-level parallelization model is a task-stealing approach. Preliminary results show speed-ups of factor 2 to 20, depending on the exact model and parallelization strategy. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1525/1/012041 |