Loading…

Faster RooFitting: Automated parallel calculation of collaborative statistical models

RooFit [1,2] is the main statistical modeling and fitting package used to extract physical parameters from reduced particle collision data, e.g. the Higgs boson experiments at the LHC [3,4]. RooFit aims to separate particle physics model building and fitting (the users' goals) from their techni...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2020-04, Vol.1525 (1), p.12041
Main Authors: Patrick Bos, E G, Burgard, Carsten D, Croft, Vincent A, Pelupessy, Inti, Attema, Jisk J, Verkerke, Wouter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RooFit [1,2] is the main statistical modeling and fitting package used to extract physical parameters from reduced particle collision data, e.g. the Higgs boson experiments at the LHC [3,4]. RooFit aims to separate particle physics model building and fitting (the users' goals) from their technical implementation and optimization in the back-end. In this paper, we outline our efforts to further optimize this back-end by automatically running parts of user models in parallel on multi-core machines. A major challenge is that RooFit allows users to define many different types of models, with different types of computational bottlenecks. Our automatic parallelization framework must then be flexible, while still reducing run-time by at least an order of magnitude, preferably more. We have performed extensive benchmarks and identified at least three bottlenecks that will benefit from parallelization. We designed a parallelization layer that allows us to parallelize existing classes with minimal effort, but with high performance and retaining as much of the existing class's interface as possible. The high-level parallelization model is a task-stealing approach. Preliminary results show speed-ups of factor 2 to 20, depending on the exact model and parallelization strategy.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1525/1/012041